缺血性中风仍然是全球长期残疾的主要原因。虽然精氨酸酶-1(arg1)表达巨噬细胞通常与抗炎性反应和组织修复有关,但我们揭示了ARG1对中风后恢复的意外有害影响。我们证明,渗透巨噬细胞中的Arg1改变了炎症环境,并对中风后的功能恢复产生负面影响。值得注意的是,我们的研究突出了浸润巨噬细胞和常驻小胶质细胞之间的独特相互作用,其中Arg1-表达巨噬细胞调节小胶质细胞功能,影响Peri -Insumct区域的突触修剪和炎症反应。这些发现提供了有关中风恢复的复杂免疫机制的重要见解,并提出了先进的治疗策略。靶向浸润巨噬细胞中的ARG1可能会调节中风后炎症环境,从而改善中风患者的长期结局。
摘要 ◥ L-精氨酸分解代谢酶精氨酸酶 1 (ARG1) 的表达是一种由肿瘤诱导的髓系细胞介导的中心免疫抑制机制。ARG1 活性的增加促进了免疫抑制微环境的形成,并导致许多癌症表现出更具侵袭性的表型。此前已证实癌症患者和健康受试者的外周血中存在针对 ARG1 衍生表位的内在 T 细胞免疫。为了评估 ARG1 衍生肽疫苗作为单一疗法和与检查点阻断联合疗法的抗肿瘤效果,我们利用了不同的体内同源小鼠肿瘤模型。为了评估抗肿瘤效果,对肿瘤进行了流式细胞术分析和 IHC,并进行了 ELISPOT 测定以表征免疫反应。我们表明,针对 ARG1 的治疗性疫苗能够激活内源性抗肿瘤
红系细胞在免疫调节和免疫抑制中的作用是现代免疫学的新兴课题之一,由于不同组织和不同物种的红系细胞表达不同的免疫调节分子,因此仍需要进一步阐明。在本研究中,我们利用 BD Rhapsody 的最先进的单细胞靶向蛋白质组学和转录组学以及通过 NanoString Sprint Pro 进行的癌症相关基因拷贝数变异分析,对来自成年健康捐赠者和成年急性淋巴细胞白血病患者的人骨髓红系细胞进行了彻底的研究。我们发现人类骨髓红系细胞表达 ARG1、LGALS1、LGALS3、LGALS9 和 C10orf54 (VISTA) 免疫抑制基因、CXCL5、CXCL8 和 VEGFA 细胞因子基因,以及参与抗菌免疫和 MHC II 类抗原呈递的基因。我们还发现 ARG1 基因表达仅限于单个红细胞簇,我们将其称为 ARG1 阳性正色红细胞,而晚期红细胞在急性淋巴细胞白血病的情况下会失去 S100A9 并获得 MZB1 基因表达。这些发现表明,即使没有任何转分化刺激(如癌症),稳定状态的红细胞生成骨髓红细胞也会表达髓系特征基因。
摘要成人人脑神经源性区域中神经干细胞(NSC)的存在尚未解决。为了解决这个问题,我们创建了一个使用单细胞转录组学源自新鲜神经外科样品的成年人类室内室内区(SVZ)的细胞图集。我们发现了35 2成人径向神经胶质(RG)类人,Arg1和arg2。arg1具有胎儿早期RG(ERG)和ARG2的共享特征在转录上类似于胎儿外部RG(org)。我们还捕获了早期神经元和少突胶质细胞NSC状态。我们发现,其转录组驱动的生物学计划支持其作为早期NSC的角色。最后,我们表明这些NSC具有在状态和沿谱系轨迹之间过渡的潜力。这些数据40表明,多能NSC驻留在成人人类SVZ中。
小胶质细胞的极化促进了顺铂诱导的耳毒性的发展,而源自TNF-α预处理的间充质干细胞(MSC)的外泌体(EXO)可能诱导巨噬细胞的极化。将小鼠腹膜内注入顺铂,以建立耳毒性模型。骨髓MSC(BMSC)用TNF-α预处理48小时,并富集相关的TNF-EXO或EXO,这些TNF-EXO或EXO富含在耳毒小鼠的左耳中进一步跨斜向施用。听觉敏感性得到了揭示。用肌球蛋白7a染色检测到毛细胞的数量。在顺铂暴露的小鼠中揭示了受损的听觉敏感性和上调的毛细胞损失,可以通过EXO或TNF-EXO治疗来逆转。在接触顺铂暴露的耳蜗中检测到机械上调的IBA1,CD86,INOS,CD206和ARG1。TNF-EXO或EXO给药进一步降低了IBA1,CD86和INOS表达,并增加了CD206和ARG1表达。TNF-EXO或EXO给药抑制了促炎性细胞因子(IL-1β和IL-6)的产物,同时增强了顺铂暴露的COHLEA中抗炎细胞因子IL-10产生。重要的是,与EXO相比,TNF-EXO给药显示出更深刻的好处。TNF-α预处理可能是增强BMSC衍生外泌体对顺铂诱导的耳毒性的能力的一种新的治疗选择。
长卷,也称为SARS-COV-2感染后急性后遗症(PASC),包括一系列症状,持续存在数周或几个月后Covid-19。这些症状影响多个OR-GAN系统,会显着影响生活质量。这项研究采用机器学习方法来识别用于治疗长相互作用的基因靶标。使用数据集GSE275334,GSE270045和GSE157103,应用递归结合特征选择(REFS)来识别与长相关相关的关键基因。该研究强调了靶基因,例如PPP2CB,SOCS3,ARG1,IL6R和ECHS1的治疗潜力。临床试验和药理学干预措施(包括双重抗血小板疗法和抗凝剂)在管理共同19-9相关并发症方面的功效探索。调查结果表明,机器学习可以有效地识别生物标志物和潜在的治疗靶标,从而为长期相互企业的患者提供了有希望的个性化治疗策略的途径。
癌症是全球仅次于心血管疾病的头号死亡原因,迫切需要新的策略来克服对现有癌症治疗的治疗耐药性。髓系抑制细胞 (MDSC) 是未成熟的髓系细胞,具有强大的免疫抑制能力,可对抗已证实的抗肿瘤效应物,例如自然杀伤细胞 (NK 细胞) 和 T 细胞,从而促进癌症的发生和发展。至关重要的是,MDSC 在几乎所有肿瘤类型和人类癌症患者中都很容易被识别,过去十年的大量研究已经认识到它们在对现代癌症治疗的所有四大支柱(即手术、化疗、放疗和免疫疗法)产生治疗耐药性方面发挥的作用。MDSC 通过多种机制抑制抗肿瘤免疫,包括已充分表征的精氨酸酶 1 (Arg1)、诱导型一氧化氮合酶 (iNOS) 和活性氧 (ROS) 介导的途径,以及其他几种最近发现的途径。 MDSC 在健康的稳态下基本不存在,主要存在于病理条件下,因此它们成为颇具吸引力的治疗靶点。然而,迄今为止缺乏针对 MDSC 的特异性标记,这极大地阻碍了治疗的发展,目前还没有临床批准的专门针对 MDSC 的药物。临床上消耗 MDSC 并抑制其免疫抑制功能的方法对于推进癌症治疗和克服治疗耐药性至关重要。本综述详细概述了目前对 MDSC 介导的抗肿瘤免疫抑制机制的理解,并讨论了针对 MDSC 免疫抑制机制以克服治疗耐药性的潜在策略。
