为了研究V 2 GA 5中超导性的两间隙性质,我们利用了密度功能理论(DFT)方法来计算沿K x方向的频带结构,并将其与光子能量依赖性角度分辨的光疗法光谱光谱(ARPE)进行了比较。S3。值得注意的是,在图。s4表现出与位于-0的狄拉克点的显着频带交叉。5 eV结合能在(k x,k y)=(0,0)围绕布里群区域边界周围,随着k x的增加,它打开带隙。此外,从ARPE和DFT结果观察到的不同K X值的带状交叉的波矢量的微小差异表明沿K x方向弱分散行为。
上述项目ID ID FIS-2023-02406杯D53C24005490001由MUR通过Bando Fis 2(Advanced la Scienza)资助,旨在建造和运营全新的2D量子材料电子光谱实验室。主要的新颖性是在紫外光子能量范围内起作用的角度逆光发射(ARIPES)设备的构造,其前所未有的分辨率优于40 MeV。该系统将与更传统的角度分辨光发射系统(ARPE)耦合,在与参考技术的相同范围内。单色电子源的可用性(ARIPES所需)和电子分析仪(用于ARPES)允许在同一样品和同一设备中实现电子能量损耗光谱(EELS)测量。ARPE,ARIPES和EEL的组合可以使量子材料的量子态在费米水平以下和高于量子状态的量子状态有效2-维电子结构中的完全观察。此外,鳗鱼可以在费米水平上提供2个粒子光谱函数。最后,在同步梁线上以相似分辨率执行的共振非弹性X射线散射(RIX)可以通过确定诸如Phonons和Magnons之类的集体激励来补充在“上面F”实验室中测得的数据。
量子比率理论定义了符合普朗克 - 因斯坦关系𝐸= ℎ𝜈 = ℎ𝜈 = ℎ𝜈 =𝑒=𝑒22 ∕ℎ𝐶的量子机械速率是一个与量子电容𝐶𝐶𝐶𝐶𝑞𝐸=𝐸=𝐸=𝑒=𝑒22 ∕𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑞以前,这种对𝜈的定义已成功地用于定义氧化还原反应的电子转移(ET)速率常数的量子机械含义,其中与ET反应有关的法拉达电流证明了与室温下的相对论量子电动力学有关(Bueno,2023c)。这项研究表明,𝜈的定义需要与态密度的扰动(𝑑𝑛𝑑𝑛𝑑𝐸)=𝐶𝑒2的扰动本质上相关的相对论量子电动力学现象。在此基础上,计算了嵌入电解质环境中的石墨烯的电子结构。使用量子比率光谱法(QRS)测量的电子结构与通过角度分辨的光发射光谱(ARPE)或通过计算密度功能官能理论(DFT)方法计算得出的电子结构非常吻合。电化学QRS比ARPE具有明显的实验优势。例如,QRS可以在室温和电解质环境下获得石墨烯的电子结构,而ARPES需要低温和超高效率。更重要的是,QRS可以使用手持式,廉价的设备在原位上操作,而Arpes一定需要昂贵且繁琐的设备。
摘要:我们在拓扑绝缘子(TI)BI 4 TE 3上合成和光谱研究了单层C 60。此C 60 /BI 4 TE 3异质结构的特征是在BI 4 TE 3的A(9×9)细胞(9×9)细胞上的小说(4×4)C 60上层结构中出色的翻译顺序。C 60 /BI 4 TE 3的角度分辨光发射光谱(ARPE)表明,ML C 60在室温下接受Ti的电子,但在低温下没有电荷转移。通过拉曼光谱,光致发光(PL)和C 60 /BI 4 TE 3的计算进一步研究了这种依赖温度的掺杂。在低温下,拉曼光谱和PL显示C 60相关信号的强度急剧增加,这表明过渡到旋转有序状态。计算解释了C 60吸附到BI 4 TE 3表面缺陷的电荷转移。电荷转移的温度依赖性归因于C 60的方向顺序。由于旋转运动的冻结,C 60的电子亲和力在低温下增加。关键字:拓扑绝缘子,富勒烯,角度分辨光发射,拉曼,光致发光
最近,在理论上提出并实现了电子状态的自旋分裂(SS)的非常规的抗铁磁铁,其中包含指向不同方向的矩矩的磁性sublattics通过一组新型的符号来连接。这样的SS是实质性的,依赖性的,并且与自旋 - 轨道耦合(SOC)强度无关,使这些磁铁有望用于抗磁性旋转旋转。在此结合了角度分辨光发射光谱(ARPE)和密度功能理论(DFT)计算,这是一项对CRSB的系统研究,是一种金属旋转式抗速率抗fiferromagnet候选,具有Néel温度T n = 703 K。数据揭示了沿平面外和平面动量方向的CRSB的电子结构,从而使各向异性K依赖性SS与计算结果非常吻合。在非对称动量点下,此类SS的大小至少达到至少0.8 eV,这显着高于最大的已知SOC诱导的SS。这种化合物扩大了抗磁性旋转型材料的材料的选择,并且很可能会刺激随后对在室温下起作用的高效率旋转器件的研究。
超导间隙对称性对于理解潜在的超导性机制至关重要。角度分辨光发射光谱(ARPES)在确定非常规超导体中的间隙对称性方面起着关键作用。然而,到目前为止,ARPE只能测量超导间隙的大小,而不能测量其相位的幅度。该相必须由其他相敏感技术检测到。在这里,我们提出了一种直接检测ARPES超导间隙标志的方法。使用众所周知的D波间隙对称性,在Cuprate超导体BI 2 SR 2 SR 2 CACU 2 O 8+δ中成功验证了此方法。当两个频段具有较强的带间相互作用时,超导状态下所得的电子结构对两个频段之间的相对间隙标志敏感。我们目前的工作提供了一种检测间隙标志的方法,可以应用于各种超导体,尤其是具有多个轨道的超导体,例如铁基超导体。
我们对量子材料的理解通常是基于通过光谱均值(最著名的是角度分辨光发射光谱(ARPE)和扫描隧道显微镜的精确确定其电子光谱的。都需要原子清洁和平坦的晶体表面,这些表面是通过在超高真空室中进行原位机械裂解来制备的。我们提出了一种新的方法,该方法解决了当前最新方法的三个主要问题:(1)切割是一种高度的稳定性,因此是一种效率低下的过程; (2)断裂过程受散装晶体中的键支配,许多材料和表面根本不会切割; (3)裂解的位置是随机的,可以防止在指定的感兴趣区域收集数据。我们的新工作流程是基于微型晶体的聚焦离子光束加工,其中形状(而不是晶体)各向异性决定了裂解平面,可以将其放置在特定的目标层上。作为原则证明,我们显示了ARPES沿AC平面的SR 2 RUO 4的微裂解和SRTIO 3的两个表面取向产生,这是众所周知的很难裂解立方钙钛矿。
关节感谢2024年报告的121家公司(在纸张和数字版本之间):3BA,3TI PROGETTI,ABDR,ACEA,ACEA(基础架构),Adriacos,Aecom Italia,Aegis,Aegis - Cantarelli&Cantarelli&Partners,Ag&P greenscape,akeron,Akeron,Akeron,Aigenscape astria,Allpplan,Alplan,Alplan,Alplan,Alplan,Alpan and arpera and arpera and arpera,arpera,arpera and arpera,arpera,arpera,arpere as and arpera aste as and arpe IA,ATI项目,Baumschlager Eberle,Beretta Associati,Binini Partners,Bizzarri,BMS Progetti,Boffa Petrone Partners /Building,Bono,Bono,Cosorzio stobile stobile eteteria,Consorzio stabile Eteria,Conteco,Conteco,Conteco EOS咨询,ESA工程,EY工程和技术服务,F&M Ingegneria,GAD全球援助开发,GAE Engineering,Garretti Associates, GEZE, Gpa Partners, Gruppo Contec, Harpaceas, Hill International, Holzner & Bertagnolli Engineering, Hub Engineering, Hydea, IA2Buildings, Ideàs, Il Prisma, Inarcheck, Interplan 2 Architects, IQT Consulting, Ird Engineering, Italconsult, Italferr, J&A, La Sia, LC&Partners, Lombardi Ingegneria, Lombardini22, Luca Dini, MAD Architects, Maestrale, Maire, Manens, Mpartner, Net Engineering, No Gap Controls, OBR – Open Building Research, Offtec Progetti, One Team, One Works, Open Project, Pier Currà Architettura, Pierattelli Architetture, Pini Group, Pininfarina, Politecna Europa, Politecnica, Proger, Progetto CMR, Progin, Pro Iter Group, Recchi Engineering, Rimond, Rina Consulting, Sbga Blengini Ghirardelli, SCE Project, Schiattarella Associati, Seingim、Settenta7、Sidoti Engineering、SIIP、Sina、Soa Group、Speri、Starching、Sti Corporate、Studio Amati / Next-A、Studio Cartolano、Studio in.PRO、Studio Marco Piva、Systematica、Systra、TeamSystem、Technital、Techproject、Tecne、Tecnicaer (Consorzio Mythos)、Tekne、Valle 3.0、Venicecom Group、Vianini Lavori、Wsp Italia、Xorigroup /Cloud for Bim。
在二维电子系统(2DE)中发现了这种丰富行为的显着示例,该系统在带绝缘子3(LAO)和SRTIO 3(STO)之间形成的界面形成。[3]在基于氧化物的2DE中观察到了许多有趣的物理现象,包括超导性,[4]一种有趣的磁反应,[5,6]和非常规的RashBA效应。[7–9]基于该系统的不同设备已被证明,首先通过编写原子力显微镜的尖端编写结构来避免与氧化物的光刻图案相关的固有困难。[10]虽然最终克服了这些,并且证明了具有电子束光刻术的电场效应的有效制造[11] [11]在LAO/STO中实现高迁移率2DE所需的高增长温度仍需为设备制造带来挑战。[12]可以通过在室温下沉积Al层来形成2DE的演示,已经为在设备中实现基于STO的2DS的新观点开辟了新的观点。[13]最近观察到基于Al/sto 2DES的设备中非常大的旋转转换效应,突出了该系统对氧化物电子产品的潜力。[14]同样的工作还表明,2DES的Complex频段结构对于其属性和设备性能至关重要。现在,在最常见的晶体学方向上,通过角度分辨光学光谱(ARPE)对Sto裸露面的2DE的电子结构已经进行了很好的研究。[15–20]该2DE是通过引入氧气空位来形成的,这些空位是通过在UHV条件下用高能量光子的辐照在裸露表面产生的。[21]相同的机制允许在其他氧化物(如KTAO 3,SNO 2和TIO 2)中稳定表面2DES [22-26],并且与Ar Ion bombard bombard的金属STO表面层不同。[27,28]铝在UHV裸露表面上的铝沉积以类似的方式产生了2DE。在这种情况下,由于有效的氧化还原反应而产生了氧空位,而Al膜从底物中泵入氧气,而氧气则将其氧化为绝缘Alo X。[13],由于诱导此Al/sto 2DE仅需要很少的Al,因此表面敏感的ARPES测量也可以访问。正如预期的那样,通过两种方法获得的2DE的电子结构相似,因为两个系统都出现了氧气空位
