摘要非convex优化的主要挑战是找到一个全局最佳的挑战,或者至少要避免“不良”本地最小值和毫无意义的固定点。我们在这里研究算法与优化模型和正则化相反的程度可以调整以实现这一目标。我们认为的模型是许多局部最小值的非概念,不一致的可行性问题,在这些点上,这些点之间的差距在这些点的附近最小。我们比较的算法都是基于投影的算法,特别是环状投影,环状放松的Douglas-Rachford算法以及放松的Douglas-Rachford在产品空间上分开的。这些算法的局部收敛和固定点已经在详尽的理论研究中表征。我们在轨道分辨光子发射光谱(ARPES)测量的轨道层析成像的背景下演示了这些算法的理论,这些理论都是合成生成和实验性的。我们的结果表明,虽然循环投影和循环恢复了Douglas-Rachford算法通常会汇聚最快,但重新使用Douglas-Rachford在产品空间上划分的方法确实从其他两个算法的不良本地算法中移开,最终从其他两个算法中掌握了当地最小值的群库,与全球范围的群体相关点,以确定了与全球范围相对应的群体的关键点。
摘要自1911年发现超导性以来,追求高过渡 - 温度(T C)超导体一直是凝结物理学的核心重点。在丘比特和基于铁的超导体中的突破性超过了40 K麦克米兰极限,并将其确定为高温超导体。在2019年,在平面 - 平面无限层镍酸盐薄膜中报道了超导性,尽管t c <40 k。2023年,在高压加工的高压力摄入量下,biLayer ruddlesden-popper(RP)镍的液体氮气 - 温度超导率。在这里,使用巨大的氧化原子层逐层外观(goall-epitaxy)[1],我们报告(LA,PR)3 Ni 2 O 7膜中的环境压力超导性[2],具有40 k的发作t c。超导体 - 绝缘体过渡阶段图[3]。角度分辨光发射光谱(ARPES)测量[4,5]揭示了孔掺杂孔的多轨fermi表面。沿着布里渊区的对角线发现具有颗粒 - 孔对称特性的温度依赖性能隙[6]。这些环境压力镍超导体为揭示高温超导性机制提供了一个新的平台。参考文献[1]国家科学评论,NWAE429(2024)。[2]自然,doi:10.1038/s41586-025-08755-Z(2025)。[3] Arxiv:2502.18068。[4] ARXIV:2501.09255。[5] ARXIV:2501.06875。[6] ARXIV:2502.17831。查询:3943 6303
在狭窄的间隙半导体或半学中,当带隙能量小于电子孔结合能时,电子和孔之间的有吸引力的库仑力可以诱导激发剂绝缘体(EI)基态。图1A中说明了规范相图。EI相在半导体相(E G> 0)和半阶段(E G <0)之间出现。相对向EI状态的相变是电子孔对的Bose-Einstein凝结。如图1b所示,电子和孔之间的有吸引力的库仑力在EI阶段在费米水平上产生带隙。1960年代的开创性理论(Mott,1961; Jerome等,1967; Zittartz,1967; Halperin and Rice,1968)之后进行了更详细的理论著作,揭示了BCS-BEC交叉从半导体侧到相图(Bronold and Fehske,2006; Bronold; Bronold; Bronold; Bronold; Bronold; Bronold; Bronold; Bronold; Bronord; Bronold; Bronold; Bronold; Bronold; Bronold; Bronold; Bronold; Bronold; Bronold; Bronold; Bronold; 2008; Phan等人,2010年)。尽管有理论成就,但对EIS的实验研究仅限于诸如TM(SE,TE)之类的少数材料(Neuenschwander and Wachter,1990; Bucher等,1991; Wachter等,2004)。ei的性质(se,te)并非部分原因是由于其磁性。Tise 2表现出电荷密度波(Disalvo等,1976)。通过角度分辨光发射光谱(ARPES)研究了电荷密度波的起源(Pillo等,2000; Rossnagel等,2002; Qian等,2007; Zhao等,2007)。虽然在早期
化学替代通常用于探索材料中的新基础状态,但疾病的作用经常被忽略。在MN取代的BAFE 2 AS 2(MNBFA)中,尽管在标称孔掺杂相的相位观察到了超导性(SC)。相反,出现了玻璃磁相,与S = 5 /2 MN局部自旋相关。在这项工作中,我们使用角度分辨光发射光谱(ARPES)对MNBFA的电子结构进行了全面研究。我们发现MN会导致电子口袋的小且特异性的降低,仅部分破坏了嵌套条件。基于对光谱特性的分析,我们观察到所有频段,电子散射速率随MN含量的函数的增加。这被解释为增加的带不连贯性,我们认为这是抑制MNBFA磁顺序的主要因素。此发现将MNBFA电子带结构的特性与这些材料中观察到的玻璃磁性行为联系起来,并表明由于散布了Fe衍生的激发的集体磁杂质行为,因此不存在SC。此外,我们的分析表明,自能量[IM(E B)]虚拟部分的结合能(E B)依赖性通过分数缩放(IM(E B)∝√-E B)最好描述。这些结果表明,MN将MNBFA调为Bafe 2 AS 2中相关的Hund的金属与BAMN 2 AS 2中的Hund的绝缘体之间的MNBFA变为电子障碍相。
碳基纳米结构可以根据其精确的键合结构显示出异常多样的特性。这包括石墨烯纳米带 (GNR),1-3 其中石墨烯晶格被限制为狭窄的一维条纹。具有扶手椅取向边缘的 GNR 显示出半导体带结构。相比之下,锯齿形甚至手性 GNR 是准金属的,并且会形成自旋极化边缘态,2-5 除非它们非常窄。在这种情况下,两侧的边缘态相互杂化,这会猝灭自旋极化并赋予带常规的半导体带结构。6,7 对于具有 (3,1) 手性矢量的带,维持准金属行为所需的最小宽度包括从一侧到另一侧的六条碳锯齿线。6 这一理论预测最近已通过合成和光谱表征 Au(111) 上不同宽度的 (3,1) 手性 GNR 得到实验证实。 8 然而,这些纳米带,就像纯锯齿状边缘的 GNR 9 或具有与周期性锯齿状边缘段相关的低能态的其他 GNR 10–12 一样,迄今为止仅在 Au(111) 上合成和表征。为了研究具有较低功函数的不同基底对纳米带电子特性的影响,我们在弯曲的 Ag 晶体 13 上合成了六条锯齿状线宽的 (3,1) 手性 GNR((3,1,6)-chGNR,图 1a),该晶体相对于中心 (111) 表面取向向两侧跨越高达 ±15 度的邻位角(图 1b)。整个晶体的合成都是成功的,但样品每一侧的不同类型的台阶对纳米带的优选方位角排列有不同的影响。这为我们提供了一个理想的样品,可通过角分辨光电子发射 (ARPES) 研究沿纳米带纵轴和垂直于纳米带纵轴的能带色散。我们使用的反应物是 2',6'-二溴-9,9':10',9”-四蒽 (DBTA,图 1a),合成方法见补充信息。8 它经过
nbp是一种非中心对称拓扑WEYL半学,具有两个关键特征:Weyl点(WP),它们在其大量内通过时间逆转对称(TRS)在其大量内保护,及其在表面上的扩展,称为表面Fermi Arc [1]。这些表面费米弧与韦尔葬礼之间的动态相互作用是各种非凡现象的来源,例如极高的磁磁性,显着的迁移率,量子振荡和手性磁效应。因此,理解并在战略上操纵这些费米弧非常重要[1-3]。在我们的研究中,我们进行了角度分辨光发射光谱(ARPES)实验,以探索NBP的Fermi表面的变化,NBP(一种半学),随后蒸发了铅(PB)和Niobium(NB)。我们专注于在其(001)表面上在磷(P)和niobium(NB)终止上分裂的原始单晶。我们的观察结果表明,与未表现出这些特征的NB端端表面不同,P端的表面显示出独特的勺子和领带形的表面状态。当我们将PB的单个单层(ML)应用于P端的NBP时,我们注意到了一个重要的拓扑Lifshitz Transition(TLT)。这种过渡重新排列了一对桥接邻近的布里鲁因区,改变费米表面并引起费米能量的转移。相反,将约0.8 mL的NB添加到P端的NBP中,其电子结构接近TLT的临界点,从而导致部分转化。[1] H. F. Yang等人,Nat。社区。10,3478(2019)。10,3478(2019)。尽管在费米表面进行了这些修饰,但表面费米弧仍继续连接到拓扑保护的Weyl点。此外,NB终止的NBP,覆盖1.9 mL的Pb显示出其琐碎的表面状态的变化,这是普通的Lifshitz过渡的结果。[2] A. Bedoya-Pinto等,Adv。mater。33,2008634(2021)。[3] S. Souma等人,物理学。修订版b 93,161112(r)(2016)。该研讨会将在203室的英语现场提供,尽管可以使用变焦 - 但在IP PAS网站上提供了链接。
摘要Moiré超级晶格是通过精确堆叠范德华(VDW)层设计的,对探索密切相关的1-4和拓扑现象的巨大承诺具有巨大的希望。但是,这些应用已通过常见的制备方法阻止了:苏格兰胶带去角质单层的撕裂7。它具有低效率和可重复性8,以及扭曲角度不均匀性,界面污染9,微米尺寸8的挑战,以及在升高温度下脱离twist的趋势10。在这里,我们报告了一种有效的策略,可以构建具有高产量吞吐量,接近统一的收益率,原始接口,精确控制的扭曲角度和宏观尺度(至百万计)具有增强的热稳定性的高度一致的VDWMoiré结构。我们进一步证明了各种VDW材料的多功能性,包括过渡金属二甲化物,石墨烯和HBN。Moiré结构的膨胀尺寸和高质量的大小和高分辨率映射可将相互空间回折的晶格和具有低能电子衍射(LEED)和角度分辨光发射光谱光谱光谱(ARPES)的Moiré迷你带结构进行高分辨率映射。该技术将在基本研究和互惠设备的大规模生产中都有广泛的应用。主要的莫伊尔超晶格是由两个晶格晶格平面之间的界面干扰引起的,这些晶格晶格平面与晶格常数和/或对齐角不同。具有可调的带填充和掺杂条件,Moiré超级晶格成为研究电子11,Ickitons 12,Solitons 13和拓扑带结构的集体行为的多功能平台。6,14在特定的扭曲角度(即范德华(VDW)双层界面的魔法角度),这些超级峰值大大降低了电子动能,从而使库仑相互作用占主导地位,从而促进了强电子相关性,从而导致了FERMI水平附近的平坦电子带。15,16除了双层外,最近的实验发展正在探索混合尺寸系统中的Moiré系统,具有更健壮的超导性和更丰富的兴奋性物理学16-19。例如,为扭曲的石墨烯/石墨结构展示了魔术角的Van Hove奇异性。20在石墨烯/石墨系统上的最新传输测量图说明了单个准二维杂交结构的形成,这是通过栅极可调的Moiré电位和石墨表面状态组合的21,22,其中散装晶体的性质被超级晶体势能调整为在界面处的超级乳势。