总结本文探讨了专注于互动性的艺术和技术领域的实践,尤其是互动艺术。 div>我们研究了与互动艺术相关的关键概念,例如互动者的作用,互动美学,娱乐性特征和关系架构师以及其他要素。 div>为此,我们考虑了莫里斯·贝纳诺(Maurice Benayoun),Studio azzurro,Marcel-líAntunezRoca和Rafael Lozano-Hemmer等艺术家的互动作品。 div>此外,我们质疑具有暂时的计算机技术,尤其是涉及人造轻度的计算机技术的定义。 div>我们试图通过促进互动概念及其对当前技术进步的反应来促进当前辩论的贡献,其响应于当前的技术进步,这些技术涵盖了一系列旨在模仿人类认知功能的系统。 div>最终,我们提供了有关互动艺术的观点,目的是有助于对艺术和技术中的互动性进行更广泛的了解,作为一种系统性,视觉,技术和美学体验。 div>
分子对接已成为结构性生物学和药物化学家工具包的重要组成部分。给定分子靶标的化合物和三维结构(例如,蛋白质)将化合物固定在靶标中,预测化合物的结合结构和结合能。对接可以通过筛选大型虚拟复合库来发现目标的新型配体。对接还可以为基于结构的配体优化或研究配体的作用机理提供有用的起点。计算方法的进步,包括基于物理学的和机器学习方法以及互补的实验技术,使对接成为更强大的工具。我们回顾了扩展坞的工作原理以及如何推动药物发现和生物学研究。我们还描述了其当前的局限性和克服它们的持续努力。
爱沙尼亚的现代化旅程开始恢复1991年苏联独立。过渡期的特征是重大的经济挑战,包括过度通货膨胀,缺乏私有化资源以及创建新的机构框架的需求。尽管有这些障碍,爱沙尼亚还是在逆境中获得了机会,并踏上了全面的技术现代化道路。在1990年代初期,爱沙尼亚面临着从头开始建立新的技术基础设施的艰巨任务,这在很大程度上依赖于过时的苏联时代系统。尽管不到50%的人口可以访问电话,爱沙尼亚政府做出了一个关键的决定,将从模拟技术跳到数字技术,从芬兰降低了旧的模拟电话交换系统的要约,以支持数字未来。这种战略选择导致了手机和其他数字技术的迅速采用,完全绕过了中间模拟技术[1-4]。
RNA干扰(RNAi)是一种古老的生物学机制,用于防御外部入侵。可以以序列的方式使任何与疾病相关的基因保持沉默,从而使小的干扰RNA(siRNA)成为有希望的治疗方式。在发现了两个十年的旅程之后,Alnylam Pharmaceuticals实现了两种siRNA Therapeutics,Onpattro®(Patisiran)和Givlaari™(Givosiran)的批准。回顾了人类的长期药物史,siRNA治疗目前已经建立了一个非凡的里程碑,因为它已经改变并将继续改变人类疾病的治疗和管理。可以每季度(甚至每年两次)进行治疗效果,而小分子和抗体并非如此。药物开发过程非常困难,旨在克服复杂的障碍,例如如何对所需的组织和细胞进行效率,安全地传递siRNA,以及如何在其活动,稳定性,特异性和潜在的范围范围内提高siRNA的性能。在本综述中,全面审查了siRNA化学修饰及其生物医学性能的演变。所有临床探索和商业化的siRNA输送平台,包括GalNAC(N-乙酰基乳糖胺) - siRNA Conjugate及其基本设计原理。还总结了siRNA治疗发育的最新进展。本评论为在该领域工作的一般读者提供了全面的视图和路线图。
我们提出了一种在价值创造和责任框架内识别和发展创新的方法。我们首先确定了当前实践中创新的主要问题,这种实践在结构上是不负责任的,因为它往往在设计上具有分裂性和退化性。为了解决这个问题,我们提出了一个新的创意生成框架,其中社会价值、经济价值和创新突破构成了我们工作的边界。我们提出了分析在这些边界内创作的艺术作品的想法,将其作为负责任创新的灵感、洞察力和创意生成的来源。在它们的交汇处,存在着巨大的潜力,可以创造价值并为经济增长的分布式和再生模式的进步做出贡献。通过引导好奇心,我们可以激发艺术驱动的创新。
我在英国中学观察到,这一变化是由于认知科学在教育话语中日益增长的影响力。认知科学领域结合了心理学(探索思维过程)和神经科学(将思维过程与特定的大脑活动联系起来),以及语言学和计算机科学来研究认知。然而,在认知科学领域,在过去 30 年里,神经科学最能吸引那些对研究心智感兴趣的人的想象力(Donoghue & Horvath 2017)。国际上对神经科学革命性教育潜力的兴奋,得益于非侵入性和移动性大脑成像方法的发展和可用性(Ansari 等人 2012;Janssen
扩散限制聚集(DLA)由于其简单性和在诸如纳米和微粒聚集等物理学中的广泛应用而引起了很多关注。在这项研究中,DLA的算法用Python编写。Python的Turtle库用于在计算机监视器上生长时绘制骨料。该算法在Raspberry Pi上运行。为DLA模拟创建了便宜的便携式介质。将两个不同的选项放在算法中。第一个路径不允许主粒子在碰撞后转动骨料外。但是,第二个允许骨料内外的主要粒子的渗透。通过算法获得由500-2000个主要颗粒组成的球形树突结构。这些结构的分形维度约为1.68。发现其孔隙率低于50%。还计算出回旋半径。除了科学研究之外,还提供了使用这些树突结构的算法艺术的例子。©2023 DPU保留所有权利。关键字:扩散限制聚合;随机步行;分形维度;孔隙率;覆盆子pi;算法艺术
The effect of 12 weeks brain jogging based learning models to improve gross motor skill: object control skill in elementary school El efecto de 12 semanas de modelos de aprendizaje basados en jogging cerebral para mejorar la habilidad motora gruesa: habilidad de control de objetos en la escuela primaria Willy Rizkyanto, Wawan Suherman, Hariyuliarto,Galih Pamungkas Yogyakarta州立大学(印度尼西亚)摘要。儿童的运动技能可用于确定孩子的成长和发育是否受损。研究的目的是了解基于大脑慢跑的学习模型的影响,以提高小学生的对象控制技能。这项研究是使用两组的实验方法进行的,即控制和干预。与传统学习模型(直接教学)相比,基于大脑的学习模型。本研究的样本包括该学科的学生总数为60。4A和4B类具有相似的特征(年龄,平均身高/体重,运动学习材料,持续时间以及体育学习实施时间)。使用SPSS IBM 26进行数据处理。对照组和实验组之间测试后结果的平均差异是基于SPSS输出的重要性(P <0.05)。基于独立样品t检验中的输出,众所周知,两只手的静态均值为0.000 <0.05;正手罢工为0.000 <0.05;一只手静止的运球,为0.004 <0.05;两只手抓到0.000 <0.05;踢一个0.003 <0.05的固定球;额外投掷0.000 <0.05;底漆为0.004 <0.05。对两个手动辅助协作,正手罢工,一个手站运球,两个手接脚,踢齿轮球,超手掷球以及小学的底掷能力对大脑大脑的大脑基于大脑的学习模型可以是提高对象控制技能的性能的一种解决方案。 div>关键词:大脑慢跑,学习模型,对象控制技能,总电机。 div>摘要。 div>儿童运动技能可用于确定孩子的成长和发育是否受到影响。 div>该研究的目的是了解基于脑慢跑的学习模型的效果,从而提高了小学生的对象控制技能。 div>这是一项精细研究,设计了两个预测试组。 div>与传统学习模型(直接教学)相比,基于脑慢跑的学习模型。 div>这项研究的样本包括该学科的学生总数为60。 div>第4A和4B类具有相似的特征(年龄,身高/体重的平均水平,运动材料,持续时间和运动学习时间)。 div>使用SPSS IBM 26进行数据处理。 div>对照组和实验之间随后结果的平均差异是基于SPSS输出的重要性(P <0.05)。 div>关键字:脑慢跑,学习模型,对象控制能力,厚电动机。 div>日期接收:06-05-23。 div>2021)。 div>基于独立样品t检验的结果,众所周知,两手击中静止的值为0.000 <0.05; 0.000 <0.05的正确打击;固定运球,手为0.004 <0.05; D捕获两只手的0.000 <0.05;踢一个0.003 <0.05的固定球;在0.000 <0.05的头上发射;在0.04 <0.05的手下转动。 div>有两只手在固定中风中的显着影响,右翼打击,用一只手静止的滴筒,用两只手抓住固定的运球,踢一个固定的球,将头部扔在头上,并在小学下向小学下方滚动,基于大脑慢跑的学习模型可以是提高对象控制能力的性能的解决方案。 div>接受日期:08-30-23 Willy Ihsan willyihsan@uny.ac.id介绍运动科学是运动的研究。 div>运动科学会尽早对孩子进行托运,以便他们能够长期以来的运动质量。 div>儿童的运动技能可用于确定骨骼,肌肉和神经系统都是运动的化合物。 div>总体运动技能和基本运动技能与儿童密切相关(Nugroho等人 div>儿童的基本运动能力分为三类:运动,非核心和操纵运动(Oñate-Navarrete,Battle-Flores和Páez-Herrera 2023)。 div>第三运动是一种总体运动动作,其特征涉及人体中的大肌肉。 div>根据研究结果,学生需要用于支持学校的体育锻炼以提高儿童运动技能的工具(Fernandez B,Soto J 2023)。
1960年出生于1983年的Bordeaux,Jean-FrançoisLasserre,Jean-FrançoisLasserre博士,于1983年毕业。在他的人类学领域执行后,1994年,他成为波尔多大学牙科学院假肢的副教授。2003年,他捍卫了他的大学博士学位论文,内容涉及现代和历史人口中的牙科磨损话题,开发和引入了咀嚼的模拟器设备,以研究新型陶瓷和复合牙科材料的体外磨损。超过15年,他一直在教授闭塞,后来致力于研究和教学牙齿美学和陶瓷修复体。他在国家和国际杂志上撰写了许多文章,并经常在法国和国外介绍讲座,致力于美化陶瓷修复。Jean-FrançoisLasserre在大学牙科医院中心的实践,但也拥有波尔多的私人诊所,专门从事牙科美学,植入学和假肢。他是牙科审美研究和教育小组的创始人,名为“共生”。多年来,让·弗朗索瓦·拉瑟雷(Jean-FrançoisLasserre)一直是牙科教师的副院长,负责国际关系,并获得了荣誉勋章,并获得了Honionis Causa以及医学院大学(UMP)的副教授(UMP)的头衔。他还是罗马尼亚Cluj-Napoca的医学与药房“ Luliu Hatieganu”的副教授。他还是罗马尼亚Cluj-Napoca的医学与药房“ Luliu Hatieganu”的副教授。
视频监控设备按照视频监控安装授权 Prot. N 10449 中指示的时间范围以录制模式运行,参考 2020 年 5 月 18 日发布的实践 N° 106-2020。 实时拍摄仅用于门禁控制以及上述安装视频监控授权申请所获得的许可。 2) 处理目的和处理的法律依据 通过视频监控系统收集的待处理数据被处理并直接用于保护公司资产的原因。摄像机的放置位置用于对已获得视频监控授权的房间以及外部通道和开口进行监控。 3) 处理方法和时长 摄像机拍摄的图像将按照上述视频监控授权申请中的规定进行存储,除非在假期或办公室关闭期间有进一步存储的特殊需要,以及在需要遵守特定调查要求和司法机关或司法警察的情况下,之后图像将与之前的图像重叠,并删除它们。