1. 简介量子信息论彻底改变了信息论和计算的基础 [1, 2]。前量子(称为“经典”)科学框架允许用整数(例如,根据美国信息交换标准代码 (ASCII) 用 7 比特字符串表示文本字符)来标记客观信息,这是信息论的基础。信息处理可以根据布尔逻辑规则执行,表现为一位运算(例如 NOT)和两位运算(例如 NAND)的连接。量子信息通过允许信息态的相干叠加彻底改变了信息游戏,遵循量子互补原理,可以认为它既是粒子状的,又是波浪状的。例如,三位字符串 010 在量子上成为量子态 | 010 ⟩(希尔伯特空间元素),其物理表现为三个自旋向下、自旋向上和自旋向下的电子,其中自旋向下状态标记为 | 0 ⟩,自旋向上状态标记为 | 1 ⟩(以狄拉克符号或布拉克符号表示法 [3])。将此三电子态与其正交补态叠加为 | 101 ⟩ 。对于本文中隐含的状态归一化,这两个状态的叠加为 | 010 ⟩ + | 101 ⟩ ,以二进制表示形式表示为数字 2 和 5 的叠加。这些信息态的叠加可以进行量子处理,即以保持相干性的方式处理。理想情况下,这种叠加态可以通过任意幺正映射(希尔伯特空间上的等距)进行变换。实际上,噪声和损失等开放系统效应可能会影响性能,但几乎幺正映射(例如接近幺正的完全正迹保持映射 [1])足以用于有用的量子信息处理,前提是采用容错方式采用量子版本的纠错 [4]。量子计算的早期动机是模拟物理,特别是以一种自然的量子描述方式模拟量子系统 [5],即使用量子计算。自这一最初想法以来,出现了许多卓越的量子算法,其中卓越是指与传统算法相比提供卓越的性能,例如高效计算意味着计算资源,例如运行时间和计算数量
关键词:光束法区域网平差、自校准、系统校准、非度量相机 摘要 使用市售的非度量相机(例如佳能、尼康)进行摄影测量操作正变得非常流行。使用它们的原因有几个,例如有效载荷更轻、传感器成本低、尺寸更小,以适应有限的机载空间(例如无人机作为数据采集平台)、快速周转项目、易于更换等。与使用数字高分辨率度量图像传感器(Hexagon DMC、Microsoft Vexcel UltraCam 系统等)相比,所有这些属性都具有优势。然而,为了获得接近使用度量系统获得的结果,必须考虑上述非度量图像传感器的所有系统误差;对它们进行建模并消除(或尽量减少)它们对所获取图像的影响。本文回顾了与使用非度量图像传感器相关的功能和随机模型。将关注传感器内部校准参数,即校准焦距、主点、对称 - 非对称 - 切向镜头畸变模式和可能严重扭曲所获取图像的其他偏差。为此,使用焦距为 50 毫米的尼康 D810 数码相机在摄影测量测试场区域“Franklin Mills Mall”进行相机校准。该场地覆盖了多个飞行高度,分别产生 15 和 30 厘米 GSD 的图像。飞行了两个垂直摄影测量飞行带,具有高端搭接和侧搭接。测试场区域拥有大约 25 个目标控制和检查点,这些点的测量精度为 2 厘米或更高。使用 PIX4Dmapper(专为从无人机或地面获取的图像而创建的软件包)对上述图像进行自动空中三角测量。导出图像观测结果(ASCII),并使用汉诺威莱布尼茨大学程序系统 BLUH 进行相应的束流区域调整,该系统能够通过附加参数(十二个标准加上不同失真模式的中型非度量数字相机)进行自我校准。调查中使用了不同数量和分布的地面控制点 (GCP) 和检查点 (ChkPts)。本文介绍了结果。
1. 简介量子信息论彻底改变了信息论和计算的基础 [1, 2]。前量子(称为“经典”)科学框架允许用整数(例如,根据美国信息交换标准代码 (ASCII) 用 7 比特字符串表示文本字符)来标记客观信息,这是信息论的基础。信息处理可以根据布尔逻辑规则执行,表现为一位运算(例如 NOT)和两位运算(例如 NAND)的连接。量子信息通过允许信息态的相干叠加彻底改变了信息游戏,遵循量子互补原理,可以认为它既是粒子状的,又是波浪状的。例如,三位字符串 010 在量子上成为量子态 | 010 ⟩(希尔伯特空间元素),其物理表现为三个自旋向下、自旋向上和自旋向下的电子,其中自旋向下状态标记为 | 0 ⟩,自旋向上状态标记为 | 1 ⟩(以狄拉克符号或布拉克符号表示法 [3])。将此三电子态与其正交补态叠加为 | 101 ⟩ 。对于本文中隐含的状态归一化,这两个状态的叠加为 | 010 ⟩ + | 101 ⟩ ,以二进制表示形式表示为数字 2 和 5 的叠加。这些信息态的叠加可以进行量子处理,即以保持相干性的方式处理。理想情况下,这种叠加态可以通过任意幺正映射(希尔伯特空间上的等距)进行变换。实际上,噪声和损失等开放系统效应可能会影响性能,但几乎幺正映射(例如接近幺正的完全正迹保持映射 [1])足以用于有用的量子信息处理,前提是采用容错方式采用量子版本的纠错 [4]。量子计算的早期动机是模拟物理,特别是以一种自然的量子描述方式模拟量子系统 [5],即使用量子计算。自这一最初想法以来,出现了许多卓越的量子算法,其中卓越是指与传统算法相比提供卓越的性能,例如高效计算意味着计算资源,例如运行时间和计算数量
I 2 C 通信协议 HMC6352 作为从设备通过双线 I 2 C 总线系统进行通信。HMC6352 使用分层协议,接口协议由 I 2 C 总线规范定义,下层命令协议由 Honeywell 定义。数据速率为 I 2 C 总线规范 2.1 中定义的标准模式 100kbps 速率。总线位格式为 8 位数据/地址发送和 1 位确认位。数据字节(有效负载)的格式应为区分大小写的 ASCII 字符或二进制数据(发送给 HMC6352 从设备)和返回的二进制数据。负二进制值将采用二进制补码形式。默认(工厂)HMC6352 7 位从属地址为 42(十六进制)用于写入操作,或 43(十六进制)用于读取操作。HMC6352 串行时钟 (SCL) 和串行数据 (SDA) 线没有内部上拉电阻,并且需要主设备(通常是主机微处理器)和 HMC6352 之间的电阻上拉 (Rp)。建议在标称 3.0 伏电源电压下使用约 10k 欧姆的上拉电阻值。可以使用 I 2 C 总线规范 2.1 中定义的其他值。本总线规范中的 SCL 和 SDA 线可以连接到多台设备。总线可以是单个主设备到多个从设备,也可以是多个主设备配置。所有数据传输均由负责生成时钟信号的主设备发起,数据传输长度为 8 位。所有设备均由 I 2 C 的唯一 7 位地址寻址。每次 8 位传输后,主设备都会生成第 9 个时钟脉冲,并释放 SDA 线。接收设备(寻址的从设备)将拉低 SDA 线以确认 (ACK) 传输成功,或将 SDA 保持为高以否定确认 (NACK)。根据 I 2 C 规范,SDA 线中的所有转换都必须在 SCL 为低时发生。此要求导致 SCL 为高时与 SDA 转换相关的总线上出现两个独特条件。主设备将 SDA 线拉低而 SCL 线为高表示启动 (S) 条件,而停止 (P) 条件是将 SDA 线拉高而 SCL 线为高。I 2 C 协议还允许重启条件,其中主设备发出第二个启动条件而不发出停止条件。所有总线事务都以主设备发出启动序列开始,然后是从设备地址字节。地址字节包含从机地址;高 7 位(bits7-1)和最低有效位(LSb)。
根据《联邦公报法》(44 U.S.C. Ch. 15)和《联邦公报》管理委员会的规定(1 CFR Ch. I),《联邦公报》由美国国家档案与记录管理局(位于华盛顿特区 20408)联邦公报办公室每天出版,周一至周五(法定节假日除外)。美国政府印刷局文件主管(位于华盛顿特区 20402)是官方版本的独家经销商。《联邦公报》为向公众提供联邦机构发布的法规和法律通知提供了统一的系统。这些法规和法律通知包括总统公告和行政命令、具有普遍适用性和法律效力的联邦机构文件、国会法案要求公布的文件以及其他涉及公众利益的联邦机构文件。除非发布机构要求提前归档,否则文件在公布前一天已在联邦公报办公室存档,供公众查阅。有关目前可供公众查阅的文件列表,请访问 http://www.nara.gov/ fedreg。国家档案和记录管理局的印章证实了《联邦公报》是根据《联邦公报法》设立的官方连续出版物。根据 44 U.S.C. 1507,《联邦公报》的内容应得到司法认可。《联邦公报》以纸质和 24 倍缩微胶片形式出版。它也可以免费在线获取
encoding failure occurs when receiver unable interpret data due incompatible encoding schemes this lead corruption or unreadable data cause usually different computing systems use different encoding methods encoding used represent store communicate digital information example some systems use ascii american standard code for information interchange while others use utf-8 unicode transformation format 8-bit if system attempt send information encoded one method but receiver uses different method then encoding failure occur in addition incompatible coding standards encoding failures can also caused by incorrect character sets or technical errors transmission minor discrepancies sender's receiver's coding standards can cause error fortunately several ways prevent encoding failures most effective ensure both parties use same coding standard before sending data verify all characters message correctly encoded before transmitting default coding standard use unicode accommodate almost all languages character sets Failure in Memory Retention: Causes and Consequences The failure to retain information in长期记忆可能由于各种因素而发生,包括缺乏积极参与,助记符设备的使用不佳,实践检索不足以及对其他记忆的干扰。####编码故障类型的类型有三种主要类型的编码失败:1。**编码失败**:当信息未编码为长期内存时,就会发生这种情况,从而无法进行检索。2。**存储衰减**:当信息被编码时,这会发生,但是由于神经元或它们之间的路径损坏而随着时间的流逝而衰减。3。但是,如果此过程被中断怎么办?**检索失败**:这种故障会发生,尽管编码和存储正确并存储了长期记忆,但会发生这种故障。####对编码几个因素的干扰因素可能会妨碍编码,包括:**其他记忆中的干扰**:当项目与其他记忆具有相似之处时,正确编码可能是具有挑战性的。***彩排干扰**:重复自己的头部,而不是试图记住它会使它难以保留。***认知负载**:由于多个任务或分心而导致的过多认知负荷可能会阻碍编码。#### Examples of Retrieval Failure Retrieval failure can manifest in various ways, such as: * Forgetting recent activities * Struggling to recall names or phone numbers * Difficulty accessing information from long-term memory #### Strategies for Overcoming Encoding Failures To improve encoding and retention, consider the following strategies: * Practice active engagement with the material * Utilize mnemonic devices to aid in organization and recall * Engage in regular practice retrieval to加强学习信息基于各种方法(例如它的所见,听到或含义)存储在内存中。编码和解码是将书面符号变成可理解的形式的过程。在编码中,我们使用单个声音来构建单词,而在解码时,我们大声朗读或将书面单词转换为可理解的形式。要阅读,我们将字母解码为它们相应的声音,然后在我们的脑海中构建单词,这对我们大多数人都会自动发生。自我参考效应还通过将信息与自己联系起来有助于记忆。编码有些不同,需要了解单个声音并以正确的顺序将它们放在一起。语义编码涉及将含义附加到信息上并将其连接到相关信息,从而更有效。健忘可能是由压力,抑郁,缺乏睡眠,甲状腺问题或某些药物副作用引起的。如果编码数据不正确,则可能会导致数据的显示或解释方式。可以通过将实际记忆与通过催眠收到的他人收到的建议相结合,或使用照片或其他图像来植入虚假记忆来创建错误的记忆。编码失败,一种心理现象,可能会对我们的日常生活及其他地区产生深远的影响。在当今快节奏的世界中,记忆形成在塑造我们的身份方面起着巨大的作用。这样想:当您学习新知识时,您的大脑会进行精神舞蹈来处理该信息。那是编码故障的地方 - 系统中的一个故障,使我们争先恐后地记住我们从未真正学到的东西。不喜欢忘记您已经知道的东西 - 这更像是从来没有一开始就写下来。想象一下在聚会上遇到一个新人,但他们的名字像手指之间的沙子一样从您身上滑落。那是在您眼前发生的编码失败。我们的大脑不断受到信息的轰炸,这取决于我们专注于真正重要的事情。持续编码失败可能会随着时间的流逝而导致认知能力下降。但是,当我们过于陷入多任务处理或被太多数据所淹没时,我们的大脑可能难以跟上 - 导致那些令人沮丧的遗忘时刻。即使是压力和情感上的东西也可能会阻碍 - 就像当您如此担心某些东西时甚至无法记住放置钥匙的地方。并且不要忘记身体上的因素 - 如果我们在听力或看见(例如听力或看见)中苦苦挣扎,它可能会影响我们学习新信息的程度。编码困难可能源于初始感知,神经系统条件以及影响大脑有效编码新记忆能力的各种其他因素。这可能会带来巨大的后果,影响学术环境中的学习和表现,个人生活中的关系甚至法律程序。诊断编码问题由于其微妙的性质可能是具有挑战性的,但是心理学家和神经科医生使用各种工具和技术,包括认知评估,记忆测试和神经影像学方法,例如功能磁共振成像(fMRI)。自我报告的症状和行为观察在诊断中也起着至关重要的作用。必须将编码失败与其他记忆障碍(例如存储或检索故障)区分开。幸运的是,个人可以采用一些策略来提高其编码能力,包括通过冥想或集中呼吸练习等正念技巧提高注意力和专注。编码故障可能是一个重大问题,但是采用助记符设备和记忆辅助工具(例如基因座方法)可以帮助改善心理联系和保留。生活方式的变化,例如定期运动,均衡饮食和足够的睡眠也会有助于最佳的大脑健康。努力的编码技术,例如总结信息或创建视觉表示形式可以显着改善记忆力保留。在某些情况下,可能需要采取医疗干预措施来解决严重或持续的编码问题。研究人员正在探索新的途径,包括针对记忆形成的脑部计算机界面和基因疗法。对编号和语义编码的研究也是一个激烈研究的领域,旨在开发针对编码故障的针对性干预措施。认识到编码在日常生活中的作用,了解其原因和后果,并采取主动步骤可以改善认知功能和更加联系的生活。编码需要积极的参与和努力;采用诸如详细编码之类的技术可以改善内存形成。在编码失败时对自己友善至关重要,将它们视为学习和成长的机会,而不是使自己殴打。您可以采用根据您的需求量身定制的个性化策略来增强您的编码能力。编码和记忆形成之间的复杂关系揭示了人类认知的复杂性。编码失败是一种普遍现象,但它是增长的机会。通过确认其意义,您可以采取积极的步骤来增强记忆创造的关键方面。您可以利用各种技术,例如正念实践,助记符设备或生活方式修改,以提高编码效率。研究继续提高我们对编码过程的理解,新发现使我们更加接近释放人类记忆的全部潜力。通过好奇和同情心的挑战,您可以将看起来像是一定的机会转变为与人类心理学复杂性更深入地互动的机会。
计算机键盘的演变可以追溯到1868年克里斯托弗·拉瑟姆·肖尔斯(Christopher Latham Sholes)的打字机发明。雷明顿公司从1877年开始的打字机大众营销在其广泛采用中发挥了重要作用。几个技术进步,包括电视机和打孔卡系统,有助于早期计算机键盘的开发。1946年,ENIAC计算机在1946年使用了打孔器读取器,1948年BINAC计算机的机电控制打字机进一步巩固了这一连接。在1960年代引入视频显示终端(VDT)彻底改变了用户界面,使用户可以看到他们在屏幕上键入的内容。此启用了更快的数据输入,编辑和编程。通过电键盘传输的VDT的直接电子冲动可显着减少处理时间。到1970年代末和1980年代初,所有计算机都使用了电子键盘和VDT,而Qwerty布局今天从sholes的发明中继承下来,今天仍然很突出。雷明顿公司开创了打字机的质量生产,导致标准计算机键盘的发展。根据传说,Qwerty布局是由Sholes和James Densmore开发的,以克服机械局限性。原始设计通过分开通用字母组合来最大程度地减少钥匙。尽管已经发明了其他布局,例如DVorak键盘,但由于其效率和熟悉程度,Qwerty仍然是最受欢迎的。新兴的电动打字机进一步合并打字机和计算机技术。皇家伯爵之家和埃米尔·鲍多特(Emile Baudot)等发明家改进了电视机机器,是键盘技术的突破。在1930年代,新键盘结合了打字机和电报技术,从而导致了关键系统的开发,这成为了早期添加机器的基础。关键技术被纳入ENIAC等早期计算机,而后来的设计具有电力打字机和磁带输入。到1964年,麻省理工学院,贝尔实验室和通用电气之间的合作导致了Multics的开发,Multics是一个分布的计算机系统,鼓励创建用于用户界面的视频显示终端(VDTS)。在计算机中打字技术的演变始于引入电动打字机,这使用户能够在视觉上看到他们正在键入的字符,从而使文本编辑和删除更加容易。这项创新还简化了编程,并使计算机更容易访问。早期键盘是基于电视机或关键的基础,但由于电力机械步骤减慢了数据传输的速度而有局限性。VDT技术和电子键盘的出现通过允许直接电子脉冲传输并节省时间来彻底改变计算。到1970年代末和1980年代初,所有计算机都使用了电子键盘和VDT。1990年代看到了手持设备的出现,从HP95LX开始,该设备开创了移动计算。最初,手持设备具有小的Qwerty键盘,使触摸键入不切实际。随着PDA的演变为包括Web访问,电子邮件和文字处理,引入了笔输入。但是,一开始,手写识别技术还不够强大。键盘产生机器可读文本(ASCII),这对于索引和搜索至关重要。手写可生产“数字墨水”,它适用于某些应用程序,但需要更多的内存,并且不如数字键盘准确。早期PDA在商业上不可行。苹果公司于1993年发布的牛顿项目很昂贵,其笔迹认可也很差。研究人员Goldberg和Richardson开发了一种简化的系统,称为“ Unistrokes”,将字母转换为单笔票进行输入。1996年发布的棕榈飞行员引入了涂鸦技术,使用户能够输入资本和小写字符。其他非钥匙板输入包括MDTIM和JOT,但由于数据捕获的记忆力更多,而与数字键盘相比,它们具有相似的限制。计算机键盘的演变是一段漫长而有趣的旅程,跨越了近两个世纪。从带有电报机的不起眼的开端到我们今天使用的时尚,多功能设备,键盘进行了重大的转换以满足不断变化的用户需求。####早期的早期开发,电报机中使用了物理钥匙和开关来编码信息。这项技术为现代键盘奠定了基础。1800年代看到打字机和电报的进步,进一步完善了键盘设计。键盘布局继续随着发短信的兴起而继续发展,通常会利用Qwerty风格的软键盘。#### Qwerty和Qwerty布局以外的标准成为具有软键盘的标准,但是其他布局(例如Fitaly,Cubon和Opti)也存在。随着语音识别技术的提高,其功能已添加到小型设备中,但没有取代软键盘。####键盘的未来随着数据输入对于发短信和其他应用程序越来越重要,键盘设计正在调整。像KALQ键盘一样的创新,Android设备上可用的分屏布局,旨在改善拇指型体验。键盘的演变可以追溯到1868年,托马斯·休斯(Thomas Hughes)发明了用于电报的钢琴风格的键盘。早期的计算机终端出现在20世纪初期,加州海军研究人员和Konrad Zuse的可编程计算机使用旧打字机进行了修改。20世纪中叶锯键板成为计算中的主食,带有打孔机器是前体。创新在20世纪后期加速,包括IBM的Selectric打字机启发键盘设计和DEC的VT50终端,其中包含集成的键盘和屏幕。关键里程碑包括IBM PC普及了F键盘,苹果的Lisa引入了GUI和鼠标减少键盘依赖性,Microsoft的天然键盘会引发符合人体工程学设计的变化。21世纪带来了更多的多功能性和连接性,无线键盘超过了销售中的有线模型。在整个旅程中,打字仍然是输入命令和数据的有效和直观的方式,在20世纪后期推动了键盘无处不在。第一个大众市场打字机于1874年发布,将Qwerty布局固定为打字的标准。后来,IBM的Selectric(1936)引入了一种可以旋转和倾斜以打印字母的类型球,从而可以轻松更改字体。当计算机出现时,他们采用了打字机的打字机制,这些机制最终演变成专用的计算机键盘。在1950年代,打孔器被用于输入ENIAC等早期计算机的数据,这些计算机读取了用代表数据和程序说明的孔读取卡片。IBM 1050终端(1964)将打字机机制与桌子和调制解调器相结合,创建了一个集成的系统。DEC VT50(1967)带有键盘和CRT显示屏的视频终端,使用户可以在输出时看到输出。Xerox Alto(1970)介绍了图形用户界面(GUI),使用鼠标进行交互而不是文本命令,从而降低了键盘依赖性。尽管如此,键盘在个人计算中仍然很重要,尤其是在1970年代和1980年代PC进入房屋和办公室时。标准是由IBM PC的模型F键盘(1981)和Apple Lisa(1983)等有影响力的模型设定的,该模型集成了鼠标以进行图形相互作用。IBM模型M(1984)完善了PC键盘,确保了IBM PC和克隆的一致性。后来,微软引入了天然键盘(1994年),引发了人体工程学的设计趋势,而苹果简化了其iMac(1999)的简化键盘,开始向没有单独的光标垫或功能键的简约设计转变。开关测试人员有助于识别首选的机械开关。现代键盘不断发展,基于具有新功能的原始Qwerty布局。现代键盘的关键特征包括无线连接,专业,自定义,可移植性,RGB照明,集成输入和增强的键入功能。今天的键盘生态系统提供了针对特定用例的各种设计。喜欢重音字符,专门的软件从上下文定制中受益,以提高生产率。键盘配件增强了多功能性,人体工程学和样式:腕部休息会减轻压力,钥匙开关O形圈噪声噪音和自定义键盘个性化美学。人体工程学因素通过促进适当的姿势来减少键入应变:将键盘定位在肘部水平,避免弯曲手腕,将垫片用于笔记本电脑,并在长时间的课程后休息。遵循基本的人体工程学原理可以使计算机键盘长期安全使用。现在,让我们凝视着令人兴奋的键盘可能性:增强现实键盘,脑部计算机接口,智能手套键盘,触觉娱乐,灵活的电子墨水显示器,上下文自动版,无线功率和神经反馈。激进的新设计将与传统模型共存,因为核心机制已被证明是永恒的。由于其触觉效率,持久的键盘仍然是一个积分的计算机接口。我们可以以其他输入机制不切实际地将思想转变为命令和内容。早期计算机缺乏显示和鼠标,而键盘是唯一可行的界面。但是,即使出现了新的选项,键盘的生产力也会执行许多任务。计算机键盘由于其众多优势而仍然是计算中必不可少的一部分:由于它们在大多数计算机中的广泛可用性,它们熟悉,响应,多功能,生产力和无处不在。虽然语音或笔迹(如语音或笔迹)在某些情况下已成为可行的替代方案,但在键盘上打字的速度和准确性继续使其成为生产力的核心组成部分。人类与键盘之间的这种共生关系持续了近两个世纪,键盘适应和发展以适应不断变化的人类行为和技术进步。因此,键盘的设计反映了人类需求与技术能力之间正在进行的相互作用,这是无情驱动创新的缩影。
点击此处 下载 Georgina Andrews 的书籍 发布日期:2010 年 3 月 11 日 出版商:Usborne 页数:96 页 下载 Kim Amiano K 的书籍 发布日期:2017 年 2 月 7 日 出版商:Editions La Plume et le Parchment 页数: 590 页 下载 Ludovic Sot 的书籍 发布日期: 2018 年 8 月 21 日 出版商: VUIBERT 编号页数: 352 页 下载 Marc Voisin 的书籍 发布日期: 2016 年 8 月 9 日 出版商: Ellipses Marketing 页数: 312 页 下载 Clive Gifford 的书籍 发布日期: 2017 年 10 月 5 日 出版商: Gallimard Jeunesse 页数 : 252 页 下载JEAN-BPTISTE de PANAFIEU 的书籍发行日期:2019 年 2 月 6 日出版商:Bayard Jeunesse 页数:48 页 下载 Thierry Dulaurans 的书籍 发布日期:2016 年 5 月 11 日 出版商:Hachette Éducation 页数:240 页 下载 Dominique Lagraula 的书籍 发布日期:2015 年 6 月 1 日 出版商:Editions Accès 数量页数:288 页 下载 Didier Anselm 的书籍发布日期:5 月 10 日2017 出版商:Hatier 页数:180 页 这是用于在线拼写检查的 SpellCHEX 词典。 [CHEX %PARSER=2.13 %FLOATED=19991204 %GENERATED=DR/ALL %BOUND=TRUE] [CHEX %BEGIN] AARDVARK AARDWOLF ABA ABACA ABACI ABACK AACUS ABACUSES ABAFT 鲍鱼 被遗弃 被遗弃者 被遗弃 被遗弃 基础 基础 基础 基础阿巴什ABASHED ABASHES ABASHING ABASHMENT