神经祖细胞会产生兴奋性神经元,其次是少突胶质细胞(OLS)和垂体细胞。然而,调节该神经元时间 - 胶质开关的特定机制尚未完全了解。在这项研究中,我们表明,在胚胎发育的后期阶段,需要在背前祖细胞中Notch信号的适当平衡才能产生少突胶质细胞。在两性的小鼠胚胎中使用离体和子宫方法中,我们发现Notch抑制减少了背胸膜中少突胶质细胞的数量。然而,缺口过度活化也阻止了寡构成并保持祖细胞状态。这些结果表明,在促进和抑制寡头生成中,Notch信号传导的双重作用,必须对其进行微调才能在正确的时间和正确的数字中生成少突胶质细胞谱系细胞。在此过程中,我们进一步将其下游的典型档位hes1和hes5确定为负调节剂。crispr(群集定期间隔短的短质体重复)/cas9介导的hes1和hes5的敲低敲低导致促寡胶质细胞因子ASCL1的表达增加,并导致早产性寡构成。相反,将缺口与ASCL1过表达结合起来,可稳健地促进寡头生成,表明与ASCL1合成的Notch机制单独的机制,以指定少突胶质细胞的命运。我们提出了一个模型,其中Notch信号与ASCL1一起工作以指定祖细胞朝向少突胶质细胞谱系,但也通过hES依赖ASCL1的抑制来维持祖细胞状态,从而使少突胶质细胞不太早,从而导致神经元的精确时间促成神经元 - Glia Switch。
小细胞肺癌 (SCLC) 是一种恶性神经内分泌肿瘤,预后较差。本文重点研究神经内分泌 SCLC 亚型 SCLC-A 和 SCLC-N,其转录依赖性由 ASCL 1 和 NEUROD 1 转录因子驱动,这些转录因子靶向 E-box 基序以激活高达 40% 的总基因,根据 ATAC 和 H 3 K 27 Ac 标记,这些基因的启动子保持在稳定开放的染色质环境中。海洋因子 lurbinectedin 利用了这一优势,它优先靶向位于转录起始位点下游的 CpG 岛,从而阻止 RNAPII 延长并促进其降解。这消除了 ASCL 1 和 NEUROD 1 及其依赖基因(如 BCL 2 、 INSM 1 、 MYC 和 AURKA )的表达,这些基因负责相关的 SCLC 致瘤特性(如抑制细胞凋亡和细胞存活)以及其部分神经内分泌特征。总之,我们展示了这些细胞的转录成瘾如何成为它们的致命弱点,以及 lurbinectedin 如何有效地利用这一点作为一种新的 SCLC 治疗手段。
在发育过程中,脑皮质中的神经干细胞(也称为径向神经胶质细胞(RGC))产生兴奋性神经元,然后产生迁移到嗅球(OB)的皮质大型神经元和抑制性神经元。了解这种谱系开关的机制对于揭示如何控制适当数量的不同神经元和神经胶质细胞类型的基础。我们和其他人最近表明,声音刺猬(SHH)信号传导促进了皮质RGC谱系开关以生成皮质少突胶质细胞和OB中间神经元。在此过程中,皮质RGC会产生中间祖细胞,以表达关键的神经胶质发生基因ASCL1,EGFR和OLIG2。EGFR +和Olig2 +皮质祖细胞的ASCL1表达和外观增加与从兴奋性神经发生转变为皮质中的神经胶质发生和OB间神经元神经发生。虽然SHH信号促进了发育中的脊髓中的Olig2表达,但该转录调节的确切机制尚不清楚。此外,尚未探索Olig2和EGFR的转录调节。在这里,我们表明,在皮质祖细胞中,包括PAX6和GLI3在内的多个调节程序,可以防止早熟表达Olig2,这是生产皮质少突胶质细胞和星形胶质细胞的基因。我们确定了控制皮质祖细胞中Olig2表达的多个增强剂,并表明调节olig2表达的机制在小鼠和人之间是保守的。我们的研究揭示了控制皮质神经干细胞谱系转换的进化保守的调节逻辑。
图3。干细胞分解和成熟到器官及其基因表达分析。(a)分离的细胞的代表性照片嵌入了胶状基质中,它们形成球体并以囊性,环形形态分化成肺类器官。嵌入式培养物被传递。(b)分化肺器官的基因表达分析表明,气道上皮细胞谱系富集,包括基础(TP63),纤毛(FOXJ1),分泌(SCGB3A2),Goblet(SPDEF)(SPDEF)和肺神经内分泌细胞(ASCL1)。nt:未测试。(c)分化肺类器官的基因表达分析表明肺泡上皮细胞谱系(SOX9),包括肺泡II型(ABCA3,SFTPB)和I型I型(Hopx)细胞。
摘要:小细胞肺癌 (SCLC) 是一种致命的神经内分泌恶性肿瘤,因其肿瘤生长迅速、转移早和免疫环境相对“冷”而臭名昭著。目前只有标准化疗和少数免疫检查点抑制剂被批准用于 SCLC 治疗,这表明迫切需要新的治疗方法。此外,SCLC 最近被认为是一种具有高度肿瘤内和肿瘤间异质性的恶性肿瘤,这解释了部分患者的反应率不高和早期复发。根据谱系特异性转录因子(ASCL1、NEUROD1、POU2F3,以及一些研究中的 YAP1)或免疫相关基因的表达定义的分子亚型表现出不同程度的神经内分泌分化、免疫细胞浸润和对治疗的反应。尽管这种恶性肿瘤很复杂,但已经确定了一些生物标志物和靶点,许多有希望的药物目前正在进行临床试验。在这篇综述中,我们整合了这种变形恶性肿瘤的基因组图谱的最新进展、每种亚型的特征和治疗弱点以及临床阶段的有前景的药物。
哺乳动物的抽象视网膜变性导致永久视力丧失,因为无法自然再生。一些非哺乳动物脊椎动物通过Muller Glia(MG)显示出强大的再生。,我们最近通过刺激性转录因子ASCL1的转基因表达来刺激成年小鼠MG以再生功能神经元的重生。这些结果表明MG可以作为神经元替代的内源性来源,但该过程的功效是有限的。为了在哺乳动物中改善这一点,我们设计了一个小分子筛选,一种使用SCI-plex,一种将多达数千个单核RNA-seq条件多路复用到单个实验中的方法。我们使用这项技术筛选了92种化合物的库,鉴定并验证了两种在体内促进神经发生的库。我们的结果表明,高通量单细胞分子分析可以基本上改善可以刺激神经再生的分子和途径的发现过程,并进一步证明了这种方法在视网膜疾病患者中恢复视力的潜力。
先前,我们鉴定了CRACD(抑制肌动蛋白动力学调节剂,也称为Crad/Kiaa1211)肿瘤抑制剂,该肿瘤抑制剂,该抑制剂通过结合和抑制限制蛋白来促进肌动蛋白聚合以促进肌动蛋白以促进肌动蛋白聚合23。有趣的是,我们观察到CRACD KO小鼠肺中的增生病变23。这种观察结果使我们假设CRACD损失可能会驱动肺中的NE样细胞可塑性。为了测试这一点,我们检查了CRACD KO小鼠肺组织。与CRACD野生型(WT)不同,CRACD KO肺组织在支气管呼吸道和肺泡中表现出NE样增生(图1a)。免疫荧光(IF)染色证实了这种NE样细胞质量的增殖性质,如MKI67+所示,MKI67+是细胞增殖的标志物。此外,质量表达了几个NE标记,包括KRT19,SYP,CGRP,CHGA和ASCL1(图。
摘要:细胞类型之间的转分化依赖于基于知识的搜索最佳重编程因素。我们最近的研究发现,ASCL1,MiR9/9*-124,NPTB shRNA和p53 shRNA的过表达有效地将人皮肤成纤维细胞转换为神经元。通过分析人类皮肤成纤维细胞的纵向RNA-seq数据通过这些重编程因子的各种组合进行转化,我们构建了基因调节网络(GRN)模型,捕获了对神经元转化重要的高阶信息。GRN中基因群落和转录因子(TF)的检查确定OTX2和LMX1A是转化为神经元的关键调节剂,因为它们与与神经元发育和分化功能相关的基因的连接最强。 我们通过实验证实了OTX2和LMX1A的关键作用,因为它们的敲低显着损害了转换。 研究表明,GRN模型有效地扩大了人类皮肤成纤维细胞转差为神经元的经验发现最佳重编程因子。 这种方法的进一步改进可以确定直接细胞转换的普遍适用原理。GRN中基因群落和转录因子(TF)的检查确定OTX2和LMX1A是转化为神经元的关键调节剂,因为它们与与神经元发育和分化功能相关的基因的连接最强。我们通过实验证实了OTX2和LMX1A的关键作用,因为它们的敲低显着损害了转换。研究表明,GRN模型有效地扩大了人类皮肤成纤维细胞转差为神经元的经验发现最佳重编程因子。这种方法的进一步改进可以确定直接细胞转换的普遍适用原理。
小细胞肺癌 (SCLC) 是一种恶性肿瘤,其特征是生长迅速、早期转移和获得性治疗耐药。大多数 SCLC 患者处于广泛期 (ES) 疾病,即首次诊断时转移性疾病已超出半胸腔范围。SCLC 一直被认为是“药物开发的坟墓”,直到最近,化疗仍然是一线和二线治疗的标准治疗方法。与 NSCLC 相比,确定 SCLC 的治疗靶点一直很困难,部分原因是驱动突变主要是功能丧失,涉及肿瘤抑制基因 RB1 和 TP53 或目前无法靶向(例如 MYC 家族成员的扩增)。最近对 SCLC 细胞系、患者样本和代表性小鼠模型的基因表达谱分析已导致 SCLC 的四种主要亚型被提出,这些亚型以四种关键转录调节因子(ASCL1、NEUROD1、POU2F3 和 YAP1)的差异表达为特征。由于该领域研究人员的持续努力,我们对 SCLC 生物学的理解最近确实有了显著提高,但治疗方案仍然令人沮丧。虽然免疫疗法试验的最新结果令人鼓舞,但大多数患者对目前的治疗方案表现出原发性或快速获得性耐药性,这突出表明需要提高疗效并扩大目前治疗策略的范围。在这篇评论文章中,我们将讨论 SCLC 治疗的最新进展,重点关注当前对信号通路的理解、免疫疗法和靶向疗法的作用以及 SCLC 治疗反应的新兴生物标志物。
评论前列腺癌(PCA)通常从雄激素依赖性状态转变为雄激素剥夺疗法(ADT)后,更具侵略性的形式称为耐custatration-Castration-Castration-Castration canstration Cancer(CRPC)。ADT,包括手术或医疗cast割,最初通过抑制Andro Gen受体(AR)信号传导来减轻肿瘤负担,这是Pros Tate癌症生长的关键驱动力[1,2]。但是,由于恢复或绕过AR信号的几种机制,CRPC最终会发展。这些机制包括AR基因扩增,AR突变,con活性AR剪接变体的表达和肿瘤内雄激素合成[1-3]。该过渡的基础机制涉及遗传,表观遗传和激素变化,这些变化促进了细胞塑性。关键的遗传改变包括肿瘤抑制基因(例如RB1,TP53和PTEN)的丧失,以及表观遗传调节剂(例如EZH2)的变化,这有助于从前列腺腺癌cinoma转变为NEPC [4,5]。此外,诸如ASCL1和SOX2之类的转录因子在驱动神经内分泌分化和主要表型中起着至关重要的作用[6,7]。NEPC的发展通常遵循广泛的雄激素受体途径抑制剂,抗雄激素耐药性和雄激素受体表达的丧失。尽管循环雄激素的cas含量水平,但这些适应性允许持续的AR活性,驱动肿瘤pro的疗程[1,2]。CRPC肿瘤的一个子集可以独立于AR信号传导并采用神经内分泌特征,从而导致神经内分泌前列腺癌(NEPC)。NEPC的出现与对常规疗法的抵抗力和预后不良有关。NEPC的特征是AR表达的丧失和神经内分泌标记物的增益,例如铬烷蛋白A和突触素蛋白[4]。这种过渡通常是由遗传和表观遗传学变化驱动的,包括肿瘤SUP压力器(如TP53和RB1)的丧失,谱系的激活
