为何选择计算科学?• 计算科学为研究人员的工具箱增加了第三个支柱,与理论和实验并列 • 当实验过于昂贵、危险、耗时或不可能时,计算科学非常有用 • 促进从方程到算法的发现 • 几乎所有科学和工程学科都受益于美国能源部对计算科学的持续投资
• 科学计算和实验会产生数以 TB 或 PB 计的数据,必须高效存储。• 该数据存储在 ASCR 计算设施的磁盘驱动器和存档系统集合中。• 与 ASCR 的计算能力一样,高性能数据管理需要并行执行许多操作。• ASCR 投资于创新方法来存储、压缩、搜索和分析数据,以最大限度地提高并行性和性能。• ASCR 还投资于流数据和联合学习的进步,使地理位置分散的数据能够为科学建模做出贡献,而无需将所有数据存储在一个地方。
为一场专业,包容的会议做出了贡献,该会议促进了一个安全而热情的环境,以进行科学业务,并概述了对非专业行为的不可接受和潜在影响的行为。https://science.osti.gov/sw-dei/doe-drives- equity-equity-and-clusion-policies/骚扰
Perlmutter-CPU 上的 394,008 个节点小时 研究摘要:激光束在等离子体中不受阻碍地长距离传播对于高能量密度 (HED) 实验和惯性约束聚变的成功至关重要。然而,这种传播可能会受到多种激光-等离子体不稳定性的影响。由螺旋激光束驱动的等离子体波的拓扑结构提供了以前未探索过的对激光-等离子体相互作用的控制水平。与传统光束不同,螺旋激光束可以与等离子体交换角动量并激发螺旋等离子体波。这些等离子体波的螺旋拓扑从根本上改变了它们与电子和离子的相互作用,改变了不稳定性的发展和特性,包括增长率、阈值和饱和度。该项目的研究计划结构复杂,从暖螺旋等离子体波的基本特性开始,逐渐发展到单个散斑中的激光等离子体不稳定性。由于其场结构的性质,螺旋激光束和螺旋等离子体波必须以 3D 形式模拟。该项目将采用 3D 粒子胞内 (PIC) 模拟来捕捉相关物理现象。在 OMEGA 和 NIF 等高能激光设施中产生螺旋光束的新兴能力强调了及时检查螺旋激光驱动器对缓解激光等离子体不稳定性的影响的重要性。我们对螺旋光束驱动的激光等离子体不稳定性的研究由美国能源部 (DOE) 的两个项目资助:高能密度实验室等离子体项目 (DOE/SC/FES/HEDLP) 和通过高级计算进行科学发现项目 (DOE/SC/SCiDAC)。该项目针对 DOE 感兴趣的特定领域是“等离子体的非线性光学和激光-等离子体相互作用”,以促进聚变能科学。支持该提案的 SCiDAC 项目旨在解锁百亿亿次超级计算机上惯性聚变能量相关模拟中的动力学效应。该项目还将为研究生提供培训,让他们将高性能计算应用于激光-等离子体相互作用的研究。
• 应用数学和计算机科学基础,促进对自然和工程系统的理解,并从高端模拟、模型和数据中揭示科学见解。 • 高级计算,为基于新兴先进计算技术和微电子技术的科学未来做好准备。 ASCR 设施推动美国在计算、数据和网络方面的全球领导地位
高级科学计算研究概述 高级科学计算研究 (ASCR) 计划的使命是推进应用数学和计算机科学;与学科科学合作提供最复杂的计算科学应用;推进计算和网络能力;并与包括美国工业界在内的研究界合作,为科学和工程开发未来几代计算硬件和软件工具。ASCR 支持通过计算实现科学发现的最先进的能力。ASCR 与科学办公室 (SC) 以及应用技术办公室、其他机构和行业的合作对于这些努力至关重要。ASCR 的计算机科学和应用数学活动为提高国家高性能计算 (HPC) 生态系统的能力奠定了基础,通过专注于长期研究来开发创新的软件、算法、方法、工具和工作流程,以预测未来的硬件挑战和机遇以及科学应用和能源部 (DOE) 任务需求。同时,ASCR 与其他学科科学合作,在对 SC、DOE 和国家具有战略重要性的领域提供一些最先进的科学计算应用程序。 ASCR 还部署和运营世界一流的开放式 HPC 设施和高性能科学研究网络基础设施,包括这一战略技术前沿所需的独特专业知识。半个多世纪以来,美国通过持续投资于研究、开发和定期部署新的先进计算系统和网络以及有效使用它们的应用数学和软件技术,保持了世界领先的计算能力。美国在计算领域的领先地位带来的好处包括:大大提高了劳动力生产率,加速了科学和工程领域的进步,推进了先进的制造技术和快速成型技术,以及无需测试的库存管理。a 计算科学使研究人员能够探索、理解和利用自然和工程系统,这些系统太大、太复杂、太危险、太小或太短暂,无法通过实验进行探索。HPC 领域的领导地位也在维持美国的竞争力方面发挥了至关重要的作用。人们认识到,在高性能计算和值得信赖的人工智能 (AI) 以及计算和数据生态系统整合方面处于领先地位的国家将在开发创新型清洁能源技术、医药、工业、供应链和军事能力方面引领世界。美国还需要利用对科学的投资来开发创新的新技术、材料和方法,以加强我们的清洁能源经济,并确保所有美国人都能从这些投资中获益。下一代科学突破将来自于在极大规模人工智能中采用数据驱动方法,以及美国研究人员和 SC 用户设施生成的数据量和复杂性的大幅增加。人工智能技术与这些现有投资的融合为创新和技术开发和部署创造了强大的加速器。ASCR 处于关键地位,可以利用百亿亿次级生态系统和数十年的基础研究投资以及行业合作伙伴关系,以国家利益为目标,推动负责任地开发人工智能技术和人工智能支持的科学。量子信息科学 (QIS) ——利用复杂的量子力学现象创造获取和处理信息的全新方式的能力——正在开辟科学发现和技术创新的新视野,这些新视野建立在数十年 SC 投资的基础上。能源部设想未来,QIS 这一交叉领域将越来越多地推动科学前沿和创新,以实现基于量子互联网的量子应用的全部潜力,从计算到传感。然而,我们需要采取大胆的方法,更好地结合技术创新链的所有要素,并联合 SC、大学、国家实验室和私营部门的人才,共同努力,使美国引领世界走向量子未来。微电子科学应用的持续进步,尤其是这些设备在 HPC 和 AI 中的能源利用,是 ASCR 所有努力的基础。ASCR 的战略是专注于建立在 SC 专业知识和核心投资基础上的技术,通过百亿亿次计算项目 (ECP) 中建立的联系,继续与行业、应用技术办公室、其他机构和科学界进行互惠互利的合作;投资小规模试验台;并增加对应用数学和计算机科学的核心研究投资。美国能源部设想,未来量子信息系统这一交叉领域将不断推动科学前沿和创新,以实现量子应用的全部潜力,从计算到传感,通过量子互联网连接起来。然而,我们需要采取大胆的方法,更好地结合技术创新链的所有要素,并将 SC、大学、国家实验室和私营部门的人才聚集在一起,共同努力,使美国引领世界走向量子未来。微电子科学应用的持续进步,尤其是这些设备在 HPC 和 AI 中的能源利用,是 ASCR 所有努力的基础。ASCR 的战略是专注于建立在 SC 专业知识和核心投资基础上的技术,通过百亿亿次计算项目 (ECP) 中建立的联系,继续与行业、应用技术办公室、其他机构和科学界进行互惠互利的合作;投资小规模试验台;并增加对应用数学和计算机科学的核心研究投资。美国能源部设想,未来量子信息系统这一交叉领域将不断推动科学前沿和创新,以实现量子应用的全部潜力,从计算到传感,通过量子互联网连接起来。然而,我们需要采取大胆的方法,更好地结合技术创新链的所有要素,并将 SC、大学、国家实验室和私营部门的人才聚集在一起,共同努力,使美国引领世界走向量子未来。微电子科学应用的持续进步,尤其是这些设备在 HPC 和 AI 中的能源利用,是 ASCR 所有努力的基础。ASCR 的战略是专注于建立在 SC 专业知识和核心投资基础上的技术,通过百亿亿次计算项目 (ECP) 中建立的联系,继续与行业、应用技术办公室、其他机构和科学界进行互惠互利的合作;投资小规模试验台;并增加对应用数学和计算机科学的核心研究投资。
高级科学计算研究概述 高级科学计算研究 (ASCR) 计划的使命是推进应用数学和计算机科学;与学科科学合作提供最复杂的计算科学应用;推进计算和网络能力;并与包括美国工业界在内的研究界合作,为科学和工程开发未来几代计算硬件和软件工具。ASCR 支持通过计算实现科学发现的最先进的能力。ASCR 与科学办公室 (SC) 以及应用技术办公室、其他机构和行业的合作对于这些努力至关重要。ASCR 的计算机科学和应用数学活动为提高国家高性能计算 (HPC) 生态系统的能力奠定了基础,通过专注于长期研究来开发创新的软件、算法、方法、工具和工作流程,以预测未来的硬件挑战和机遇以及科学应用和能源部 (DOE) 任务需求。同时,ASCR 与学科科学合作,在对 SC、DOE 和国家具有战略重要性的领域提供一些最先进的科学计算应用程序。 ASCR 还部署和运营世界一流的开放式 HPC 设施和高性能科学研究网络基础设施。半个多世纪以来,美国通过持续投资于研究、开发和定期部署新的先进计算系统和网络以及有效使用它们的应用数学和软件技术,保持了世界领先的计算能力。美国计算领导力带来的好处是,在提高劳动力生产率、加速科学和工程进步、先进制造技术和快速成型以及无需测试的库存管理方面取得了巨大进步。计算科学使研究人员能够探索、理解和利用自然和工程系统,这些系统太大、太复杂、太危险、太小或太短暂,无法进行实验探索。HPC 的领导地位也在维持美国的竞争力方面发挥了至关重要的作用。人们认识到,在人工智能 (AI) 和计算与数据生态系统整合方面处于领先地位的国家将在开发创新清洁能源技术、药品、工业、供应链和军事能力方面引领世界。美国需要利用科学投资来创新新技术、新材料和新方法,以加强我们的清洁能源经济,并确保所有美国人都能分享这些投资的利益。计算科学的下一代突破将来自于采用极端规模的数据驱动方法,并与美国研究人员和 SC 用户设施生成的数据量和复杂性的大幅增加紧密结合。人工智能技术与这些现有投资的融合为创新和技术开发和部署创造了强大的加速器。量子信息科学 (QIS) ——利用复杂的量子力学现象创造获取和处理信息的全新方式的能力——正在开辟科学发现和技术创新的新视野,这些新视野建立在 SC 数十年的投资之上。能源部设想了一个未来,QIS 的交叉领域将越来越多地推动科学前沿和创新,以实现基于量子的应用的全部潜力,从计算到传感,通过量子互联网连接。然而,需要采取大胆的方法,更好地结合技术创新链的所有要素,并联合 SC、大学、国家实验室和私营部门的人才,共同努力,使美国能够引领世界走向量子未来。摩尔定律(即微芯片创新的历史速度,特征尺寸大约每两年缩小一半)由于基础物理和经济学的限制而即将终结。因此,众多新兴技术正在竞争以帮助维持生产力增长,每种技术都有自己的风险和机遇。ASCR 面临的挑战是了解它们对科学计算的影响,并为快速发展的技术可能带来的破坏做好准备,而不会扼杀创新或阻碍科学进步。ASCR 的战略是专注于建立在 SC 专业知识和核心投资基础上的技术,继续与行业、应用技术办公室、其他机构以及百亿亿次计算项目 (ECP) 的科学界合作;投资小规模试验台;并增加对应用数学和计算机科学的核心研究投资。ASCR 提议的活动将推动 AI、QIS、高级通信网络和百亿亿次级及以上的战略计算,以加速实现清洁能源未来、理解和应对气候变化、扩大我们在科学方面的投资影响以及提高美国工业的竞争优势。量子信息科学 (QIS) 是一种利用复杂的量子力学现象来创造获取和处理信息的全新方式的能力,它正在为科学发现和技术创新开辟新的前景,而这些创新建立在数十年来对量子信息科学的投入之上。美国能源部设想,未来量子信息科学这一交叉领域将不断推动科学前沿和创新,以实现量子应用的全部潜力,从计算到传感,通过量子互联网连接起来。然而,我们需要采取大胆的方法,更好地结合技术创新链的所有要素,并联合量子信息科学、大学、国家实验室和私营部门的人才,共同努力,使美国能够引领世界进入量子未来。摩尔定律(即微芯片创新的历史速度,特征尺寸大约每两年缩小一半)由于基础物理学和经济学的限制而即将结束。因此,许多新兴技术正在竞争以帮助维持生产力增长,每种技术都有自己的风险和机遇。 ASCR 面临的挑战是了解它们对科学计算的影响,并为快速发展的技术可能带来的颠覆做好准备,同时又不扼杀创新或阻碍科学进步。ASCR 的战略是专注于建立在 SC 专业知识和核心投资基础上的技术,继续与行业、应用技术办公室、其他机构以及百亿亿次计算项目 (ECP) 的科学界合作;投资小规模试验台;并增加对应用数学和计算机科学的核心研究投资。ASCR 提出的活动将推动 AI、QIS、先进通信网络和百亿亿次级及更高级别的战略计算,以加速实现清洁能源未来、理解和应对气候变化、扩大我们在科学方面的投资影响以及提高美国工业的竞争优势。量子信息科学 (QIS) 是一种利用复杂的量子力学现象来创造获取和处理信息的全新方式的能力,它正在为科学发现和技术创新开辟新的前景,而这些创新建立在数十年来对量子信息科学的投入之上。美国能源部设想,未来量子信息科学这一交叉领域将不断推动科学前沿和创新,以实现量子应用的全部潜力,从计算到传感,通过量子互联网连接起来。然而,我们需要采取大胆的方法,更好地结合技术创新链的所有要素,并联合量子信息科学、大学、国家实验室和私营部门的人才,共同努力,使美国能够引领世界进入量子未来。摩尔定律(即微芯片创新的历史速度,特征尺寸大约每两年缩小一半)由于基础物理学和经济学的限制而即将结束。因此,许多新兴技术正在竞争以帮助维持生产力增长,每种技术都有自己的风险和机遇。 ASCR 面临的挑战是了解它们对科学计算的影响,并为快速发展的技术可能带来的颠覆做好准备,同时又不扼杀创新或阻碍科学进步。ASCR 的战略是专注于建立在 SC 专业知识和核心投资基础上的技术,继续与行业、应用技术办公室、其他机构以及百亿亿次计算项目 (ECP) 的科学界合作;投资小规模试验台;并增加对应用数学和计算机科学的核心研究投资。ASCR 提出的活动将推动 AI、QIS、先进通信网络和百亿亿次级及更高级别的战略计算,以加速实现清洁能源未来、理解和应对气候变化、扩大我们在科学方面的投资影响以及提高美国工业的竞争优势。摩尔定律(即微芯片创新的历史速度,特征尺寸大约每两年缩小一半)由于基础物理和经济学的限制而即将终结。因此,众多新兴技术正在竞争以帮助维持生产力增长,每种技术都有自己的风险和机遇。ASCR 面临的挑战是了解它们对科学计算的影响,并为快速发展的技术可能带来的破坏做好准备,而不会扼杀创新或阻碍科学进步。ASCR 的战略是专注于建立在 SC 专业知识和核心投资基础上的技术,继续与行业、应用技术办公室、其他机构以及百亿亿次计算项目 (ECP) 的科学界合作;投资小规模试验台;并增加对应用数学和计算机科学的核心研究投资。ASCR 提议的活动将推动 AI、QIS、高级通信网络和百亿亿次级及以上的战略计算,以加速实现清洁能源未来、理解和应对气候变化、扩大我们在科学方面的投资影响以及提高美国工业的竞争优势。摩尔定律(即微芯片创新的历史速度,特征尺寸大约每两年缩小一半)由于基础物理和经济学的限制而即将终结。因此,众多新兴技术正在竞争以帮助维持生产力增长,每种技术都有自己的风险和机遇。ASCR 面临的挑战是了解它们对科学计算的影响,并为快速发展的技术可能带来的破坏做好准备,而不会扼杀创新或阻碍科学进步。ASCR 的战略是专注于建立在 SC 专业知识和核心投资基础上的技术,继续与行业、应用技术办公室、其他机构以及百亿亿次计算项目 (ECP) 的科学界合作;投资小规模试验台;并增加对应用数学和计算机科学的核心研究投资。ASCR 提议的活动将推动 AI、QIS、高级通信网络和百亿亿次级及以上的战略计算,以加速实现清洁能源未来、理解和应对气候变化、扩大我们在科学方面的投资影响以及提高美国工业的竞争优势。
2 Public Space, but also cosmopolitanism communicated in the slogan “Leben in Wien, Arbeiten in Europa,” Bitcoin ATMs, streets named after women, and reflected in a closing image of the ASCR video featuring a “Willkommen in der Seestadt” in a variety of languages including English, Turkish, French, Russian, Arabic, Portuguese, Spanish.Knierbein等。(2014)批评这是“文化有偏见的品牌”,以期吸引“富裕的服务经济城市居民”。从这个意义上讲,“空间情报”也对应于公共空间成为新的“后福特城市经济领土资本积累”的新领域的方式。
任务,包括人工智能和量子信息科学。委员会赞扬 ASCR 对科学应用机器学习工具的追求,以及它对未来可部署量子计算机和人工智能算法开发的支持。委员会赞扬能源部及其百亿亿次计算计划帮助美国保持超级计算技术的领先地位。委员会鼓励能源部在此成功模式的基础上,制定一项新的多年期计划,利用公私伙伴关系,共同设计和共同开发前沿的后百亿亿次先进计算技术,这对于美国继续在科学发现、国家安全和经济福祉方面保持世界领先地位至关重要。