自闭症谱系障碍(ASD)患者中有一半以上患有胃肠道(GI)合并症,例如便秘,疾病,腹痛和腹泻。最近的研究表明,在ASD中开出益生菌和益生元可以缓解胃肠道干扰和行为问题。这篇叙述性评论在过去5年中对ASD的益生菌和益生元疗法的研究进展概括,并进一步讨论了益生菌与益生元与ASD之间相互作用的潜在机制。初步证据证明了益生菌和益生元对胃肠道问题,自闭症相关的行为障碍以及肠道微生物组组成的有益作用;益生菌和益生元在ASD治疗中的机制是通过炎症信号通路,代谢途径,神经信号通道,神经信号途径和vanuss涉及的益生菌介导的。但是,结果尚无定论,主要由动物实验产生。总体而言,本综述建议对临床研究进行进一步的标准化,以便为在ASD中开出益生菌和益生元的规定。
摘要 自闭症谱系障碍 (ASD) 是一种多方面的神经发育障碍,其特征是社交困难、兴趣狭窄和重复行为。它经常与多种其他医学、精神和发育障碍共存,例如焦虑、多动症、癫痫、胃肠道问题和睡眠障碍。这些并发疾病会极大地影响自闭症患者的生活质量,增加诊断和治疗的复杂性。成功管理自闭症及其相关疾病需要采取全面的多学科方法,结合行为疗法、药物治疗和个性化支持系统。深入了解这些疾病如何相互作用并影响自闭症患者的整体功能对于改善结果至关重要。本文探讨了自闭症与其常见并发疾病之间的关系、它们对生活质量的影响以及及时和整体管理的重要性。它还探讨了家庭和社区支持的作用,以及旨在开发更有效的治疗和干预措施的未来研究方向。
自闭症谱系障碍(ASD)是一种复杂的神经发育状况,其特征是社会沟通缺陷和重复行为。越来越多地,研究将氧化应激视为ASD病理生理学的关键因素,它对帕瓦蓝蛋白(PV)中神经元的影响是一类GABA能神经元,这对于维持大脑兴奋性和抑制性信号之间的平衡至关重要。PV中神经元在网络同步和信息处理中起着至关重要的作用,并且它们的功能障碍已与ASD的核心符号相关。氧化应激定义为活性氧(ROS)与人体对其造成的损害的排毒或修复能力之间的不平衡,已被证明会破坏PV中神经元的功能,从而导致神经元损伤和突触功能障碍。此对应关系探讨了ASD中氧化应激与PV间神经元功能障碍之间的机械联系,并回顾了针对氧化应激的治疗干预措施,以保护或恢复PV中神经元的功能。我们讨论了提出的药理,遗传和环境策略,这些策略已提出缓解氧化应激并改善ASD患者的预后。2。ASD中的氧化应激机制
淀粉样蛋白β前体蛋白(APP)蛋白水解的代谢产物可能是自闭症谱系障碍(ASD)的大脑过度生长的基础。我们发现了APP代谢产物(总应用,分泌的(S)APPα和ASD儿童血浆和脑组织中的α-分泌酶Adamalysins)。在这篇综述中,我们重点介绍了支持APP代谢物在ASD中对脑头的潜在贡献的几种证据。首先,APP出现在皮质生成早期,将应用程序置于加速神经元和神经胶质生长的主要位置。APP代谢产物在神经炎症中被上调,这是ASD过度脑生长的另一个潜在促进者。APP代谢物似乎直接影响转化信号通路,这些信号通路与综合症ASD的单基因形式有关(脆弱的X综合征,PTEN,结核性硬化症复合物)。最后,调节APP表达的APP代谢产物和MicroRNA可能会通过PI3K/AKT/MTOR/MTOR/RHO GTPase途径上的ERK受体激活来导致ASD脑过度生长,特别是白质增加,有助于髓鞘形成。
自闭症谱系障碍(ASD)是一种神经发育障碍的异质群,其特征是社会障碍以及重复性和刻板印象的行为。由于缺乏批准的实验室诊断标记和有效的治疗药物,因此是最具挑战性的疾病之一。因此,迫切需要探索潜在的诊断标记或治疗靶标。胰岛素样生长因子1(IGF-1)是一种神经营养生长因子,可增强脑发育。ASD的学龄前儿童体液中体液中的IGF-1水平低于典型发育中的儿童,这可能是潜在的诊断标记。在与遗传或环境暴露有关的各种ASD模型中,IGF-1治疗可以改善核心症状或病理变化,包括神经元发育,神经细胞存活,突触激发和抑制作用的平衡,神经免疫学和氧化应激状态。2023年3月,IGF-1衍生物被批准为治疗ASD相关的神经发育障碍Rett综合征的第一种药物,以改善基本症状,例如社交交流。因此,在这篇综述中,我们提出了ASD患者中IGF-1水平改变的累积证据以及可能的机制,以及IGF-1治疗改善各种ASD模型中病理生理学的证据。IGF-1有可能成为早期诊断标记和ASD的有效治疗方法。
自闭症谱系障碍(ASD)是幼儿时期出现的一种神经发育障碍,以社交互动和沟通障碍,重复行为和潜在的合并症为特征,包括睡眠,免疫,胃肠道疾病和内分泌失衡。根据世界卫生组织(WHO)(1)的数据,截至2022年,全球有100名儿童中有100名儿童中的患病率正在上升。尽管如此,ASD表现出异质临床表现,其病因和发病机理是多方面的和复杂的。研究表明,ASD具有复杂的病因,涉及遗传因素和环境因素(2),但特定原因仍未得到充分了解。广泛的研究表明,ASD的发展和进展可能与肠道菌群营养不良密切相关。临床研究
睡眠障碍(SD)当然是所有年龄段ASD患者中报告最多的问题之一,并且对每日功能,学习和行为产生负面影响,不仅是ASD的人,而且对整个家庭的人也有负面影响(2)。的确,使用精神障碍第五版(DSM-5)最严格的诊断和统计手册的最新评论,以确定睡眠障碍的最严格标准强调,ASD人口的患病率为13%,这比一般人群中观察到的3.7%率高(3)。专门针对小儿样本的研究报告说,多达三分之二的ASD儿童可能患有SD(4-7),并强调早期诊断和治疗的重要性,以避免这些疾病倾向于慢性病(6,8)。使用主观和客观的措施对睡眠障碍进行了不同的全面评估,与他们通常开发的同伴相比,ASD儿童中发现了明显的睡眠困难。这些问题包括大大减少了总睡眠持续时间,长时间入睡的时间和降低的睡眠质量(9)。
自闭症谱系障碍 (ASD) 是一种复杂的疾病,其症状多种多样,根源在于影响大脑功能和行为的神经发育异常。最近的研究揭示了导致 ASD 的遗传、分子和细胞过程,为其病因提供了更深入的见解。同时,正在开发新的治疗策略,包括有针对性的药物治疗、行为干预和神经刺激技术,以满足 ASD 患者的具体需求。这些干预措施不仅旨在减轻症状,还旨在优化受该疾病影响的患者的日常功能和整体健康状况。本期特刊深入探讨了 ASD 背后的复杂神经生物学机制,同时批判性地研究了最新的治疗和药理学进展。它强调了正在进行的跨学科研究的重要性,旨在弥合神经生物学见解与临床应用之间的差距,最终推动开发更有效和个性化的 ASD 治疗策略。
自闭症谱系障碍 (ASD) 是一种终生的神经发育疾病,其诊断依赖于行为表现,例如相互社交互动受损、刻板重复行为以及兴趣狭窄。然而,迄今为止,ASD 的病因仍未得到研究人员的深入研究。在过去的几十年里,基于包括单个基因突变在内的强有力的遗传证据,基因编辑技术已成为探索 ASD 发病机制的重要工具,通过构建转基因动物模型验证了遗传风险因素与 ASD 发展之间的因果关系,从而有助于开发理想的基因治疗候选对象。本综述讨论了基因编辑技术和遗传研究的进展、通过基因编辑建立的动物模型以及 ASD 的基因治疗。未来的研究应侧重于提高动物模型的有效性,可靠的 DNA 诊断和对突变功能效应的准确预测可能对基因治疗的安全应用同样重要。
摘要:本综述概述了区域选择性薄膜沉积 (ASD),主要关注通过化学气相沉积 (CVD) 和原子层沉积 (ALD) 形成的气相薄膜。区域选择性沉积已成功应用于微电子工艺,但迄今为止,大多数方法都依赖于高温反应来实现所需的基板灵敏度。微电子尺寸和性能的不断缩小以及新材料、图案化方法和器件制造方案正在寻求用于电介质、金属和有机薄膜的新型低温 (<400°C) ASD 方法的解决方案。为了概述 ASD 领域,本文严格回顾了 ASD 在微电子和其他领域取得成功所必须克服的关键挑战,包括对当前工艺应用需求的描述。我们概述了 CVD 和 ALD 过程中薄膜成核的基本机制,并总结了目前已知的半导体、金属、电介质和有机材料的 ASD 方法。对于一些关键材料,定量比较了不同反应前体的选择性,从而对有利反应物和反应设计的需求提供了重要见解。我们总结了 ASD 的当前局限性以及使用先进的自下而上的原子级工艺可以实现的未来机遇。