在Kresna Budiman Fluid中,Galvo扫描速度使用激光消融方法的氧化石墨烯纳米片的产生的影响,教授。 ir。Heru Santoso Budi Rochardjo,M.Eng。,博士,HDI。
引入激光束的特征辐射与物质的相互作用(诱导的吸收,自发发射,刺激发射)爱因斯坦的A和B系数和B系数和能量密度的表达。 LASER Action and the Conditions for LASER action (Population Inversion and Pumping, meta- stable state ) Requisites of a LASER system(Energy Source or Pumping Mechanism, Active medium and Resonant cavity (or) LASER cavity) Semiconductor LASER or Diode LASER (Principle, construction and working) Applications of LASER (LASER Barcode Reader, LASER打印机,激光冷却)模型问题和数值问题
Genome Research,22:2356(2012 年)。• A. Ariza-Cosano、A. Visel、LA Pennacchio、HB Fraser、JL Gómez-Skarmeta、M. Irimia 和 J. Bessa。小鼠和斑马鱼报告基因检测中增强子活性的差异通常与基因表达的变化有关。BMC Genomics,13:713(2012 年)。• HB Fraser。基因表达驱动人类的局部适应。Genome Research,23:1089(2013 年)。• J. Chang、Y. Zhou、X. Hu、L. Lam、C. Henry、EM Green、R. Kita、MS Kobor 和 HB Fraser。酵母中顺式调控适应的分子机制。PLoS Genetics,9:e1003813(2013 年)。 • JD Smith、K. McManus 和 HB Fraser。一种针对顺式调控元件选择的新测试揭示了作用于哺乳动物转录增强子的正向和负向选择。分子生物学与进化,30:2509(2013)。• HB Fraser。细胞周期调控转录与酵母和人类的 DNA 复制时间有关。基因组生物学,14:R111(2013)。• CG Artieri 和 HB Fraser。酵母中两种基因表达水平的进化。基因组研究,24:411(2014)。• CG Artieri 和 HB Fraser。转录本长度介导果蝇基因表达的发育时间。分子生物学与进化,31:2879(2014)。• CG Artieri 和 HB Fraser。考虑核糖分析数据中的偏差表明脯氨酸在阻碍翻译中起着重要作用。 Genome Research, 24: 2011 (2014)。• R. Jiang, MJ Jones, E. Chen, SM Neumann, HB Fraser , GE Miller 和 MS Kobor。两种可及人体组织间 DNA 甲基化变异的不一致性。Scientific Reports 5: 8257 (2015)。• RC McCoy, Z. Demko, A. Ryan, M. Banjevic, M. Hill, S. Sigurjonsson, M. Rabinowitz, HB Fraser 和 DA Petrov。跨 PLK4 的常见变异与人类胚胎中有丝分裂起源非整倍体的发生率增加有关。Science, 348: 235 (2015)。 • T. Babak、B. DeVeale、E. Tsang、Y. Zhou、X. Li、KS Smith、KR Kukurba、R. Zhang、JB Li、D. van der Kooy、SB Montgomery 和 HB Fraser。人类和小鼠组织特异性基因组印迹图谱所反映的遗传冲突。《自然遗传学》,47:544 (2015)。• IM Kaplow、JL MacIsaac、SM Mah、MS Kobor 和 HB Fraser。一种基于池化的方法来映射与 DNA 甲基化相关的遗传变异。《基因组研究》,25:907 (2015)。• RM Agoglia 和 HB Fraser。解开外显子转录增强子的选择来源。《分子生物学与进化》,33:585 (2015)。 • S. Naranjo、JD Smith、CG Artieri、M. Zhang、Y. Zhou、ME Palmer 和 HB Fraser。剖析复杂顺式调控适应的遗传基础。PLoS Genetics,11:e1005751(2015 年)。[PLoS Genetics 研究奖获得者,授予 2015 年在 PLoS Genetics 上发表的最杰出论文。] • AK Tehranchi、M. Myrthil、T. Martin、B. Hie、D. Golan 和 HB Fraser。汇集的 ChIP-seq 将转录因子结合的变化与复杂的疾病风险联系起来。Cell,165: 730 (2016) 。• E. Sharon、LV Sibener、A. Battle、HB Fraser、KC Garcia 和 JK Pritchard。MHC 蛋白编码基因的遗传变异与 T 细胞受体表达偏差有关。Nature Genetics,48: 995 (2016) 。• R. Kita 和 HB Fraser。人类皮肤中阳光照射依赖性基因表达调控的局部适应性。PLoS Genetics,12: e1006382 (2016) 。
量子纠错 (QEC) 代码可以通过使用冗余物理量子位编码容错逻辑量子位并使用奇偶校验检测错误来容忍硬件错误。当量子位离开其计算基础并进入更高能量状态时,量子系统中会发生泄漏错误。这些错误严重限制了 QEC 的性能,原因有两个。首先,它们会导致错误的奇偶校验,从而混淆对错误的准确检测。其次,泄漏会扩散到其他量子位,并随着时间的推移为更多错误创造途径。先前的研究通过使用修改 QEC 代码奇偶校验电路的泄漏减少电路 (LRC) 来容忍泄漏错误。不幸的是,在整个程序中始终天真地使用 LRC 并不是最优的,因为 LRC 会产生额外的两量子位操作,这些操作 (1) 促进泄漏传输,并且 (2) 成为新的错误源。理想情况下,只有在发生泄漏时才应使用 LRC,以便同时最小化泄漏和额外 LRC 操作产生的错误。然而,实时识别泄漏错误具有挑战性。为了能够稳健而高效地使用 LRC,我们提出了 ERASER,它推测可能已泄漏的量子比特子集,并且仅对这些量子比特使用 LRC。我们的研究表明,大多数泄漏错误通常会影响奇偶校验。我们利用这一见解,通过分析失败的奇偶校验中的模式来识别泄漏的量子比特。我们提出了 ERASER+M,它通过使用可以将量子比特分类为 | 0 ⟩ 、 | 1 ⟩ 和 | 𝐿 ⟩ 状态的量子比特测量协议更准确地检测泄漏来增强 ERASER。与始终使用 LRC 相比,ERASER 和 ERASER+M 分别将逻辑错误率提高了多达 4.3 × 和 23 ×。
K. Lingenauber ∗ 、Chr. Althaus ∗ 、J. Binger ∗ 、J. Bartholomäus † 、Chr. Hüttig ∗ 、S. Meiré ∗ 、Chr. Becker ∗ 、S. Reinert † 、P. Werner † 、M. Grott ∗ 、H. Hussmann ∗
丝氨酸/苏氨酸激酶 AKT 在乳腺癌的各种亚型中经常被激活,包括激素受体阳性 (HR+) 疾病、人类表皮生长因子受体 2 阴性 (HER2-) 扩增和三阴性肿瘤。AKT 亚型的激活会促进细胞增殖、肿瘤生长和进展。Capivasertib (AZD5363) 是一种新型 AKT 抑制剂,由阿斯利康开发,是一种新的治疗方法。对于 HR+ HER2- 转移性乳腺癌女性,Capivasertib 与激素疗法的结合可延长无进展生存期 (PFS) 和总生存期 (OS),且毒性特征可接受。在三阴性转移性乳腺癌 (mTNBC) 中,Capivasertib 与化疗的结合也观察到了同样的结果。正在进行的 III 期试验的更多结果将更好地阐明 Capivasertib 在乳腺癌中的治疗作用。
•发现火灾的人通过操作最近的断路玻璃火灾警报呼叫点会发出火灾警报。这些位于走廊或靠近大楼的楼梯间(楼层出口)中。•消防元帅或发现大火的人应通过安全地点(从大学座机上拨打9-999拨打999)来致电苏格兰消防救援服务,并报告如果已知的情况,请确切地位置。•他们应该警告危险附近的其他人(在任何锁着的门上大声敲打,以确保没有人在里面)。•将建筑物留在最近的火出口,并向火元帅报告(戴着橙色的高可见度荧光背心),并提供有关火的确切位置的信息,以及是否有任何人受伤或被困在前往指定的装配点之前。
Mersen 制造标准通用“一刀切”XY 激光振镜扫描镜,孔径范围从 4 毫米到 100 毫米,可供单对使用,并配有一系列高品质反射涂层。我们的客户可以选择带或不带胶合安装的镜子,所有标准轴尺寸均可。此外,我们能够根据客户规格制造。我们可应要求提供不同等级 SiC 的 OEM 产品,最大尺寸可达 1000 毫米,几何形状也更大。
LSO 应审查所有购买激光设备的请求,并在购买前予以批准。 LSO 应对其管辖范围内使用的激光器和激光系统进行分类或验证分类。 LSO 应负责对激光工作区域进行危险评估,包括建立名义危险区 (NHZ)。 LSO 应负责确保实施和维护规定的控制措施。这包括避免不必要的重复控制,并在主要控制措施不可行或不切实际时推荐或批准替代或替代控制措施。 LSO 应批准 3B 类和 4 类标准操作程序以及可能属于行政和程序控制要求的其他程序。 LSO 应推荐或批准可能需要的防护设备,即护目镜、服装、屏障、屏幕等,以确保人员安全。 LSO 应确保定期评估防护设备以确保正常工作。 LSO 应批准区域标志和设备标签上的措辞。 LSO 应在使用前审查和批准 3B 类和 4 类激光安装设施和激光设备。这也适用于对现有设施或设备的改造。 LSO 应确保定期审核激光安装设施和激光设备的安全特性,以确保正常运行。 LSO 应确保为激光区域人员提供足够的安全教育和培训,包括进修培训。 LSO 应确定需要进行医疗监测的人员类别。 LSO 应确保保留必要的记录(适用的政府法规、医疗检查、安全计划维护、SOP、审计等要求的记录)。 LSO 应制定计划,以应对实际或疑似暴露于潜在有害激光辐射的事件通知并准备报告。 仅当 LSO 确信激光危害控制措施充分时,才会批准 3B 类或 4 类激光或激光系统运行。这些包括封闭系统内维护和服务操作的标准操作程序 (SOP),以及 3B 和 4 级系统的操作程序。这些程序应充分考虑确保安全,避免非光束危害。 所有激光设备采购均通过 LSO 进行。采购申请/请求应提交给 LSO 批准,然后再转发给采购部门。