•关键的 3 期数据显示,持续性或慢性 ITP 患者的血小板反应快速而持久,出血和抢救需求减少,身体疲劳和生活质量指标改善 •结果强调了利扎布替尼的安全性和有效性,以及其作为 ITP 中首个 BTK 抑制剂的潜力 •利扎布替尼目前正在美国和欧盟接受监管审查 巴黎,2024 年 12 月 7 日。利扎布替尼在治疗持续性或慢性免疫性血小板减少症 (ITP) 成人患者(一种罕见的免疫介导疾病)的关键性 LUNA 3 期 3 期研究的积极结果加强了利扎布替尼的疗效和安全性,利扎布替尼是一种口服、可逆、共价的布鲁顿酪氨酸激酶 (BTK) 抑制剂,并进一步支持其作为 ITP 的一流治疗药物的潜力。接受利扎布替尼治疗的患者中 65% (n=86) 实现了血小板反应,而接受安慰剂治疗的患者中这一比例为 33% (n=23)。主要终点已达到,利扎布替尼在 23% 的 ITP 成人患者中表现出持久的血小板反应,而安慰剂组为 0% (p <0.0001),关键次要终点包括出血减少、血小板反应持续的周数、对抢救治疗的需求以及身体疲劳和生活质量指标的改善。这些结果于今天在 2024 年 12 月 7 日至 10 日在圣地亚哥举行的第 66 届美国血液学会 (ASH) 年会和博览会上公布。
海德堡制药公司使用多种化合物,并建立了一个 ADC 工具箱,该工具箱通过多种途径克服肿瘤耐药性,并使用各种抗体治疗不同类型的癌症。目标是开发针对性强的 ADC,用于治疗各种恶性血液肿瘤和实体肿瘤。海德堡制药公司是第一家将绿色死亡帽蘑菇中的蘑菇毒伞素化合物用于癌症治疗的公司。这种毒素的生物作用机制代表了一种新的治疗方式,并被用作基于蘑菇毒伞素的 ADC 技术(即所谓的 ATAC 技术)中的化合物。它提供了克服治疗耐药性并消除休眠肿瘤细胞的机会,这可能会在癌症治疗方面取得重大进展——即使对于那些不再对其他治疗有反应的患者也是如此。
基因技术的应用范围从农业到医疗。最近,在 COVID-19 疫情期间,Moderna 等公司开发并获得了用于诊断和治疗目的的基因技术专利,例如 mRNA 疫苗。然而,专利保护为这些公司提供了垄断地位,最终限制了仿制药的国内生产,从而限制了人们获得救命的诊断和治疗的机会。当一家位于一国的公司在另一个国家申请专利以获得认可时,它实际上就阻止了该专利范围内任何技术的生产,无论该专利是否得到执行。然而,《与贸易有关的知识产权协议》、《生物多样性公约》和《名古屋议定书》以及其他文书规定各国有义务向其他国家转让技术。《与贸易有关的知识产权协议》和《名古屋议定书》允许各国免除基因技术的专利权。然而,一些国家已经达成了“TRIPS-Plus”协议,这些协议与《与贸易有关的知识产权协议》中的这些例外相叠加,并阻止各国利用这些例外。
灰树对病原体膜镜的耐受性似乎与叶子上特定的微生物分类群的发生有关。研究了一组细菌分离株,主要在耐受树上鉴定出它们的分类分类及其抑制灰烬死病原体的潜力。对OGRI值的检查显示出一个单独的物种位置。基于直系同源和标记基因的系统基因分析表明,与物种Achromo细菌Aestuarii一起表明了一个单独的属位置。此外,对平均核苷酸同一性和基因组比对的比率的分析表明,通常观察到该家族中类型间比较的基因组差异。由于这些研究的结果,菌株被认为代表了新属中的一个独立物种,该物种名称schauerella fraxinea gen。 11月,sp。nov。提出了类型的菌株B3P038 T(= LMG 33092 T = DSM 115926 T)。此外,将Achromobacter aestuarii的物种重新分类为Schauerella aestuarii梳子。nov。提出了。在共培养测定中,菌株能够抑制H. fraxineus菌株的生长。因此,对Fraxinea B3P038 T的基因组的功能分析揭示了介导抗真菌物质产生的基因。这种潜力与耐受灰树的植物层中普遍存在的存在相结合,使该基团有趣地进行接种实验,目的是以综合方法控制病原体。对于将来的现场试验,开发了一种特异性QPCR系统,以建立一种有效的方法来监测接种成功。
地球聚合物是从天然矿物质(粘土),废物或工业副产品的碱性激活获得的低碳粘合剂,以生成具有陶瓷特征的产品[1,2]。铝硅酸盐类型的反应性化合物迅速溶解在碱性溶液中,并形成Si型(OH)4-和Al(OH)4- [3,4]的羟基化低聚物。在多质量反应期间,四面体单元交替结合,形成构成地球聚合物的无定形格子。近年来,随着具有较低能量消耗和强大特性的粘合剂,地质聚合物已引起了很多关注,包括良好的机械性能,低液体渗透性,对高温的抵抗力和其他酸的攻击[5] [5],并大大降低了CO 2排放,更环保友好友好的材料[6 E 9]。高岭土和其他天然粘土,在通过热处理转化为梅托蛋白和钙化粘土后,低钙灰灰是合成地球聚合物的最常见前体[10]。近年来,重点一直放在高可用的原材料上,例如钙化粘土[11,12]。粘土通常由粘土矿物和其他相关的混合物组成[13]。与高岭土不同,粘土的主要缺点用作获得地球聚合物的先驱是组成的变异性和控制热激活过程的参数的控制。常用的粘土被用作地球聚合物前光照器,必须将其钙化以完全脱氢氧化,以避免形成新的稳定相,例如尖晶石[13 E 15]。因此,Buchwald等。在500至800 C之间的粘土矿物质的热激活通常会导致粘土矿物的脱羟基化[16]。其他作者研究了粘土的碱性激活。[17]研究了在550至950 c之间热激活的伊利石/蒙脱石粘土的适用性,形成地球聚合物。Essaidi等。[18]研究了在不同温度下激活的高岭土粘土和富含赤铁矿的伊利石 - 氯化粘土的碱性激活。得出的结论是,由于粘土矿物质的非晶化,Illite-Kaolinitc粘土的反应性优于高岭土粘土的反应性,获得了具有更好的机械性能的材料。Selmani等。[9]评估了两个商业元评估和三个突尼斯粘土,具有不同的化学成分,纯度和反应性,以确定它们用于地球聚合物合成的潜力。用粘土取代梅托氏蛋白,有利于多面反应。所使用的碱性激活剂是强碱性溶液,碱氢氧化物或水合碱硅酸盐。然而,由于需要高于1300℃的温度,因此通过非常昂贵且高度污染的生态过程进行了用作活化剂的碱性硅酸盐的产生,将大量CO 2排入大气中。因此,需要寻找新的替代激活解决方案,而环境和经济影响较小。改善碱性或碱性水泥的经济和生态平衡的一种方法是为传统碱性激活剂找到碱性(总或部分)。近年来,使用生物质来产生热量和电力,以便施加废物并减少CO 2排放
1丹麦弗雷德里克斯伯格哥本哈根大学地球科学与自然资源管理系| 2西北德国森林研究所,汉恩。Münden,德国| 3立陶宛考纳斯的Kaunas林业与环境工程大学应用科学大学| 4 NTNU大学博物馆自然历史系,挪威科学技术大学(NTNU),挪威特朗德海姆| 5立陶宛立陶宛农业与林业研究中心,立陶宛Kaunas | 6 Zentralstelle der forstverwaltung,ForschungsanstaltfürWaldökologieund forstwirtschaft,Hauptstraße16,Trippstadt,德国| 7森林生物多样性与自然保护研究所,联邦森林研究与培训中心,自然危害和景观,奥地利维也纳| 8 Skogforsk,Ekebo 2250,Svalöv,瑞典| 9瑞典农业科学大学瑞典南部森林研究中心,瑞典阿尔纳普| 10森林发展部,爱尔兰都柏林Teagasc | 11巴伐利亚森林遗传学办公室(AWG),德国Teisendorf | 12森林昆虫学研究所,森林病理学和森林保护,生态系统管理部,气候与生物多样性,波库大学,维也纳,奥地利,奥地利| 13丹麦哥本哈根卫生与医学科学学院进化全息学中心| 14 BIOGECO,INRAE,波尔多大学,法国CESTASMünden,德国| 3立陶宛考纳斯的Kaunas林业与环境工程大学应用科学大学| 4 NTNU大学博物馆自然历史系,挪威科学技术大学(NTNU),挪威特朗德海姆| 5立陶宛立陶宛农业与林业研究中心,立陶宛Kaunas | 6 Zentralstelle der forstverwaltung,ForschungsanstaltfürWaldökologieund forstwirtschaft,Hauptstraße16,Trippstadt,德国| 7森林生物多样性与自然保护研究所,联邦森林研究与培训中心,自然危害和景观,奥地利维也纳| 8 Skogforsk,Ekebo 2250,Svalöv,瑞典| 9瑞典农业科学大学瑞典南部森林研究中心,瑞典阿尔纳普| 10森林发展部,爱尔兰都柏林Teagasc | 11巴伐利亚森林遗传学办公室(AWG),德国Teisendorf | 12森林昆虫学研究所,森林病理学和森林保护,生态系统管理部,气候与生物多样性,波库大学,维也纳,奥地利,奥地利| 13丹麦哥本哈根卫生与医学科学学院进化全息学中心| 14 BIOGECO,INRAE,波尔多大学,法国CESTAS
* 通讯作者。leonid@mit.edu,zechner@mpi-cbg.de,ashansen@mit.edu。作者贡献:ASH 构思并启动了该项目。HBB、MG、SGH、LM、CZ、ASH 设计了该项目。ASH 进行了基因组编辑并生成了细胞系。GMD 克隆了质粒。MG、AJ、CC 和 ASH 表征并验证了细胞系。THSH 进行了 Micro-C。CC 进行了 ChIP-Seq。MG、AJ 和 HBB 使用来自 ASH 的输入优化了成像实验。MG 和 AJ 收集了图像数据。MG 和 AJ 进行了对照实验并表征了 AID 细胞系。HBB 开发了图像处理管道 CNN,并使用来自 ASH、SGH、MG 和 AJ 的输入分析了图像数据。HBB 使用来自 SGH 和 LM 的输入进行了聚合物模拟。MG、AJ、HBB 和 ASH 注释了轨迹数据。 SGH 和 CZ 在 HBB、LM 和 ASH 的帮助下设计了 BILD。SGH 开发并测试了 BILD,将 BILD 应用于轨迹数据,并在 HBB、LM、ASH 和 CZ 的帮助下开发了 MSD 分析。HBB 和 SGH 分析了聚合物模拟。ASH、LM 和 CZ 负责监督该项目。HBB、MG、SGH、AJ 和 ASH 起草了手稿和图表。所有作者都编辑了手稿和图表。+ 现地址:Illumina Inc.;美国加利福尼亚州圣地亚哥 92122 † 这些作者对这项工作的贡献相同,可以先列出自己的名字。
Kaiser Permanente Fit Rewards 由 American Specialty Health Fitness, Inc. (ASH Fitness) 通过其 Active&Fit Enterprise™ 计划管理。Active&Fit Enterprise 计划由 American Specialty Health Incorporated (ASH) 的子公司 ASH Fitness 提供。在开始或更改锻炼计划之前,请咨询您的医生。Active&Fit Enterprise 和 Active&Fit Enterprise 徽标是 ASH 的商标。其他名称可能是其商标
2023年5月25日,罗伯特·卡利夫(Robert M.FDA-2023-N-0398)尊敬的专员卡利夫:美国血液学学会(ASH)感谢有机会回应美国食品和药物管理局(FDA)对捕获细胞和基因治疗产品上批准后批准安全性和有效性数据的方法和方法的征求。Ash代表全世界有18,000多名临床医生和科学家,致力于研究和治疗与血液和血液有关的疾病。这些疾病涵盖了恶性血液学疾病,例如白血病,淋巴瘤和多发性骨髓瘤,以及诸如镰状细胞病(SCD),thalassycd,骨髓衰竭,静脉血栓栓塞和血友病等非恶性疾病。此外,血液学家是证明治疗各种血液疾病并继续成为干细胞生物学,再生医学,输血医学和基因治疗领域的创新者的潜力的先驱。ASH会员资格由基本,转化和临床科学家以及为患者提供护理的医生组成。在2018年,Ash创立了ASH研究合作(ASH RC),从而使进行研究的效率更高,从增加获得高质量的临床数据到使血液学状况的人更容易参与研究,从而加速了变化。当前的ASH RC计划着重于多发性骨髓瘤和SCD临床研究。ASH RC的基础是其数据中心,这是一个技术平台,可通过汇总有关血液疾病的研究级数据来促进信息交换。SCD临床试验网络优化了SCD中的临床试验研究,并利用数据中心收集关键信息并确定差距以推进SCD研究和治疗。Ash很高兴看到基因编辑和细胞疗法的快速进步以及有希望的新治疗选择,这些新治疗选择有望改变血液学疾病患者的护理。对接受这些治疗的个人的长期随访至关重要,对于确保这些患者的最佳结果并帮助随着时间的推移提供研究和使用这些疗法。该社会对细胞和基因治疗产品的安全性和有效性具有重大兴趣,并赞扬FDA征求对捕获这些产品的批准数据的方法和方法的意见。我们感谢有机会让Ash RC的高级医疗顾问William Wood在2023年4月27日在FDA举行的公众聆听会议上代表该协会提供口头评论,在那里他强调了Ash和Ash RC解决这些问题的努力。除了伍德博士的讲话外,我们很高兴提供有关Ash和Ash RC的工作的更多详细信息,以支持这些疗法的进步和长期随访。我们鼓励FDA利用Ash和Ash RC资源和专业知识,因为该机构考虑了这些变革性疗法的批准设置中的数据收集。
一直小于所需的坍落度流动度,即 650 毫米。通过使用 5%、9%、13% 和 17% 的高效减水剂,CBA10、CBA20、CBA30 和 CBA40-SCC 的坍落度流动度均在所需的范围内(EFNARC,2005)。随着 CBA 含量的增加,坍落度流动度降低,这是因为 CBA 的孔隙率越高,CBA 含量越高,饱和水越多。所取得的结果表明,与对照混合物相比,CBA 结构具有粗糙的形式,骨料之间的颗粒间磨损减少。其他研究人员也观察到了这种趋势(Aswathy 和 Mathews,2015)。在局部偏高岭土和 CBA 的联合使用中,随着 MK 和 CBA 的数量增加,需要更多的 SP 来满足所需的坍落度流动度范围。最大添加量为22%的SP可满足MK20CBA40混合料的坍落流动度要求。