印度尼西亚是世界上糖尿病患者最多的国家之一。糖尿病会引起严重的并发症,对患者来说具有潜在危险。本研究旨在通过考虑糖尿病的各种风险,使用分类增强 (CatBoost) 算法开发一个准确的预测模型来对糖尿病进行分类。 CatBoost 因其良好处理分类数据的能力而闻名。这项研究的初始阶段是数据处理或预处理,包括数据清理以处理不干净数据的问题、处理具有极端值的数据以及纠正不适当的数据类型。接下来,使用 CatBoost 算法进行创建预测模型的阶段,这是一种有效的决策梯度增强方法。使用混淆矩阵进行模型评估以评估分类性能。研究结果显示,糖尿病分类的准确率相当高,根据数据中使用的属性,准确率为 98.63%。希望这项研究能够有助于增进人们对糖尿病风险及其导致的死亡率的了解和控制。关键词:算法,CatBoost,糖尿病,分类,预测 1.介绍 糖尿病(DM)是一种由遗传因素、环境、饮食和其他因素引起的自身免疫性疾病[1]。糖尿病是一种与胰腺健康相关的疾病,胰腺产生胰岛素激素的异常会导致血糖水平升高。人体内血糖水平升高会扰乱肾脏、心脏和大脑等重要器官的功能 [2]。 2019 年,世界卫生组织 (WHO) 指出,至少有 200 万人的死亡可归因于糖尿病 [3]。根据2018年印尼卫生部在抗击糖尿病世界大会上的官方报告,印尼是世界上糖尿病患者最多的国家,位列第六。数据显示,印度尼西亚 20-79 岁年龄段的糖尿病患者数量达到约 1030 万人 [4]。
ABSTRAK ............................................................................................................ vii
奥本大学正在将实验和建模研究结合起来,研究从煤炭塑料废物的气化中生产氢的生物量混合物,以产生能量和燃料,同时减少温室气体的排放。主要目的是检查实验室规模的流化机气化器中所选原料混合物的气化性能。特定目标是研究蒸汽和氧气环境中的煤层生物量混合物;表征来自混合物原料的灰分/炉渣的热特性,并研究炉渣/灰与难治材料之间的相互作用;并开发工艺模型,以确定合成剂清理所需的技术,并去除氢生产的污染物。将测量煤炭塑料 - 生物量混合物的流量特性。合成气组成将分析永久性气体,例如一氧化碳,二氧化碳,甲烷和氢以及污染物,例如焦油,硫化氢,羰基硫化物和氨。
2024年3月15日至:AI验证基金会和Infocomm媒体发展机构通过电子邮件提交至:info@aiverify.sg asifma对拟议模型AI治理框架的响应,代表ASIFE构成ASIFER ASSIFER(ASEIFMA),我们的拟议机构是ASIFER的拟议机构,我们的拟议机构是A I IMPOISE的拟议机构。 (“ AIVF”)和Infocomm媒体发展局(“ IMDA”)(此类框架草案是“框架”)。此响应中提出的反馈是从Asifma的Fintech工作组和AI分支机构中收集的,这些组合近年来一直遵循与人工智能(“ AI”)和新兴技术有关的全球,区域和本地发展。Asifma发表了有关AI金融服务中AI的监管框架的观点和建议:
当人体无法很好地使用胰岛素时,糖尿病是一种疾病。 从长远来看,在这种情况下,葡萄糖水平会损害人体的器官,即使是人体中器官和组织功能的失败,可能会导致并发症甚至死亡。 根据国际糖尿病联合会的说法,2021年,由糖尿病造成的死亡人数为236,7.1.11千人,年龄在20-79岁左右。 当前技术的发展可以帮助人类获取信息并预测疾病,并可以通过使用分类技术的机器学习方法来帮助治疗的发展,并为了防止某些糖尿病更深的疾病。 作者将使用的分类算法预测糖尿病是决策树算法,支持向量机算法和幼稚的贝叶斯算法。 Div>数据糖尿病预测收集了多达2768个数据,每种算法都有70%的培训数据和30%的数据测试。 具有最高评估值的算法是幼稚的贝叶斯算法,平均准确度为78%,精度为77%,召回78%,F1得分率为77%。糖尿病是一种疾病。从长远来看,在这种情况下,葡萄糖水平会损害人体的器官,即使是人体中器官和组织功能的失败,可能会导致并发症甚至死亡。根据国际糖尿病联合会的说法,2021年,由糖尿病造成的死亡人数为236,7.1.11千人,年龄在20-79岁左右。当前技术的发展可以帮助人类获取信息并预测疾病,并可以通过使用分类技术的机器学习方法来帮助治疗的发展,并为了防止某些糖尿病更深的疾病。作者将使用的分类算法预测糖尿病是决策树算法,支持向量机算法和幼稚的贝叶斯算法。Div>数据糖尿病预测收集了多达2768个数据,每种算法都有70%的培训数据和30%的数据测试。算法是幼稚的贝叶斯算法,平均准确度为78%,精度为77%,召回78%,F1得分率为77%。
3.1 Research area: LS1 Basic life processes at the cellular level: biological mechanisms, structures and functions ...........................................................................................................................................................................................................................
溶解在水中的二氧化碳的量将取决于水源接触的碳酸钙和碳酸镁。某些地区的这些矿物质比其他地区要高得多。大量矿物质的水通常称为硬水。为什么去除气体的氧气是从水中去除的,因为它与金属反应并将氧化它接触的任何金属。与金属反应有关的氧气反应的两个主要行业是发电行业和半导体制造业。蒸汽发电厂会产生蒸汽,以创建力,以将一系列安装在轴上的叶片(类似于制造商类似)。随着轴旋转,它将机械能转换为电能。这些叶片是由金属制成的,容易氧化。如果涡轮叶片中的金属开始氧化,它们将被损坏并影响涡轮机的孔。半导体制造厂使用大量的水在经过不同的处理步骤时冲洗硅晶圆。晶圆可以通过40 - 50个单独的处理步骤进行,然后将冲洗一次,以去除该过程中使用的化学物质。氧将反应并氧化在集成电路中使用的金属。氧化物将影响电路和质量缺陷。目标溶解氧:•<1 ppb(零件十亿分)的集成电路•用于TFT显示的<50 ppb•用于发电厂二氧化碳水纯度的<10 ppb通常通过其传导能力来衡量。亨利定律:p = hx水中的离子将使水进行电子。 超纯水将具有很低的电导率,其水中几乎没有离子。 二氧化碳将与碳酸平衡存在,这将使水的电导率电离并增加。 离子交换树脂将去除离子,可用于移动二氧化碳。 随着二氧化碳水平的增加,使用机械方法而不是离子交换去除碳二二氧化碳变得更加经济。 通常,安装脱碳剂(又称DeGaser)以将溶解的二氧化碳从水中移动。 •目标二氧化碳<3 ppm如何从水中去除气体,以了解清除气体的机制,审查两种化学工程原理很重要。 这些原则将在下面简化。 亨利的法律气体每当与水接触时都会溶解在水中。 将溶于水的气体量与气体压力成正比。 这受到亨利定律的化学工程校长的约束。水中的离子将使水进行电子。超纯水将具有很低的电导率,其水中几乎没有离子。二氧化碳将与碳酸平衡存在,这将使水的电导率电离并增加。离子交换树脂将去除离子,可用于移动二氧化碳。随着二氧化碳水平的增加,使用机械方法而不是离子交换去除碳二二氧化碳变得更加经济。通常,安装脱碳剂(又称DeGaser)以将溶解的二氧化碳从水中移动。•目标二氧化碳<3 ppm如何从水中去除气体,以了解清除气体的机制,审查两种化学工程原理很重要。这些原则将在下面简化。亨利的法律气体每当与水接触时都会溶解在水中。将溶于水的气体量与气体压力成正比。这受到亨利定律的化学工程校长的约束。
