•受损的T细胞IRE1α/XBP1信号传导在实验HFPEF中指导腹膜内膜。Smolgovsky S,Bayer AL等。J Clin Invest。2023。•松果体的免疫介导的丹内尔顿是心脏病中的睡眠障碍。Ziegler KA,Ahles A等。科学。2023。•HFPEF相关的心房原纤维中的AMPK信号受损。Tong D,Schiabarella GG等。Circula5on。2022。•NAD+ REPLETON用保留的弹射子Fracton逆转心力衰竭。Tong D,Schiabarella GG等。Circ Res。 2021。 •XBP1S-FOXO1轴控制HFPEF中的脂质累积和合同性能。 Schiabarella GG,Altamirano F等。 nat Commun。 2021。 •女性在HFPEF的临床前模型中得到保护。 Tong D,Schiabarella GG等。 Circula5on。 2019。 •硝化应力通过保留的射膜散发性驱动心力衰竭。 Schiabarella GG等。 自然。 2019。 •PolycyStn-1与KV通道组装,以控制心肌细胞的重生和合同度。 Altamirano F,Schiabarella GG等。 Circula5on。 2019。 •HFPEF中的心脏代谢:从燃料到信号传导。 Capone F等。 心脏脉冲。 2023•带有弹射膜的心力衰竭的免疫代谢机制。 Schiabarella GG等。 NAT心脏脉冲。 2022Circ Res。2021。•XBP1S-FOXO1轴控制HFPEF中的脂质累积和合同性能。Schiabarella GG,Altamirano F等。nat Commun。2021。•女性在HFPEF的临床前模型中得到保护。Tong D,Schiabarella GG等。Circula5on。2019。•硝化应力通过保留的射膜散发性驱动心力衰竭。Schiabarella GG等。自然。2019。•PolycyStn-1与KV通道组装,以控制心肌细胞的重生和合同度。Altamirano F,Schiabarella GG等。Circula5on。2019。•HFPEF中的心脏代谢:从燃料到信号传导。Capone F等。 心脏脉冲。 2023•带有弹射膜的心力衰竭的免疫代谢机制。 Schiabarella GG等。 NAT心脏脉冲。 2022Capone F等。心脏脉冲。2023•带有弹射膜的心力衰竭的免疫代谢机制。Schiabarella GG等。NAT心脏脉冲。 2022NAT心脏脉冲。2022
摘要 背景 调节性 T 细胞 (Treg) 谱系由转录因子 FOXP3 定义,它控制免疫抑制基因表达谱。Treg 通常以高频率被招募到肿瘤微环境中,在那里它们可以抑制抗肿瘤免疫力。我们假设,通过系统递送的未配制的受限乙基修饰反义寡核苷酸对 FOXP3 进行药理学抑制可以调节 Treg 的活性并增强抗肿瘤免疫力,从而在癌症模型中并可能在人类中提供治疗益处。方法 我们已经确定了鼠 Foxp3 反义寡核苷酸 (ASO) 和临床候选人类 FOXP3 ASO AZD8701。在培养的 Treg 和小鼠同基因肿瘤模型中测试了 FOXP3 抑制剂对 Treg 功能和抗肿瘤免疫的药理学和生物学效应。实验由载体和非靶向对照 ASO 组以及使用多个独立的 FOXP3 ASO 进行控制。通过单因素或双向方差分析和多重比较来评估生物学效应的统计学意义。结果 AZD8701 在临床相关剂量下在人源化小鼠中表现出剂量依赖性地敲低原代 Treg 中的 FOXP3、降低抑制功能和有效下调靶标。替代鼠 FOXP3 ASO 可有效下调原代 Treg 中的 Foxp3 信使 RNA 和蛋白质水平,并在体外免疫抑制试验中降低 Treg 抑制功能。FOXP3 ASO 在体外和体内使 Treg 中的 FOXP3 水平降低 70% 以上,强烈调节 Treg 效应分子(例如 ICOS、CTLA-4、CD25 和 4-1BB),增强 CD8 + T 细胞活化并在同基因肿瘤模型中产生抗肿瘤活性。FOXP3 ASO 与免疫检查点阻断的结合进一步增强了抗肿瘤功效。结论 FOXP3 反义抑制剂提供了一种有前途的新型癌症免疫治疗方法。AZD8701 正在作为同类首创药物进行临床开发
“ALPA 以安全为本。ALPA 成立 90 多年后,这一传统仍在延续,ALPA 的 ASO 志愿者贡献了丰富的经验和专业知识,不知疲倦、无私地工作,为使北美航空成为世界上最安全、最有保障的旅行方式做出了重大贡献。本目录重点介绍了 ALPA 飞行员领导者,他们是 ASO 计划、项目和倡议的骨干。”
摘要:反义寡核苷酸 (ASO) 是一种越来越常见的药物。这些小的核苷酸序列被设计成精确靶向其他寡核苷酸(通常是 RNA 物种),并经过修改以保护它们免受核酸酶降解。它们的特异性归因于它们的序列,因此可以靶向任何已知的 RNA 序列。这些分子非常灵活且适应性强,因为它们的序列和化学性质可以定制生产。根据所使用的化学性质,它们的活性可能会发生显著变化,并且它们对细胞功能和表型的影响可能会有很大差异。虽然有些会导致靶 RNA 衰变,但另一些只会与靶标结合并充当空间阻滞剂。它们令人难以置信的多功能性是操纵核酸功能的几个方面及其过程的关键,并改变特定细胞类型或组织的转录组谱。例如,它们可用于修改剪接或掩盖目标上的特定位点。整个设计(而不仅仅是序列)对于确保 ASO 针对其目标的特异性至关重要。因此,确保考虑到药物设计和测试的整个过程至关重要。ASO 的适应性是一个相当大的优势,在过去几十年中,它使多种新药获得批准。这反过来又对患者的生活产生了重大而积极的影响。鉴于 COVID-19 大流行带来的当前挑战,有必要找到新的治疗策略来补充全球正在使用的疫苗接种工作。ASO 可能是一种非常强大的工具,可用于靶向病毒 RNA 并提供治疗范例。ASO 作为抗病毒剂的有效性的证明由来已久,但目前尚无任何分子获得 FDA 批准。在这次健康危机期间,RNA 疫苗的出现和广泛使用可能为开发市场上首批抗病毒 ASO 提供了理想的机会。在这篇评论中,我们描述了 ASO 的故事、它们的化学不同特性以及它们的特性如何转化为研究和临床工具。
反义寡核苷酸 (ASO) 是短的单链合成 RNA 或 DNA 分子,而双链 RNA 核苷酸序列称为小干扰 RNA (siRNA)。ASO 与互补核酸序列结合,影响靶核酸的相关功能。它们代表了一类新兴药物,通过革命性的作用机制,旨在直接调节致病基因及其变体,为传统的“蛋白质特异性”疗法提供替代工具。大多数 ASO 旨在治疗孤儿遗传疾病,在大多数情况下,这些疾病会严重致残,并且仍然缺乏适当的治疗方法。为了将 ASO 转化为临床成功,不断的技术进步有助于克服多种药理学、毒理学和配方限制。因此,最近已经实施了化学结构,并探索了新的生物共轭和纳米载体配方策略。这项工作的目的是提供反义技术的概述,并对美国食品药品监督管理局 (FDA) 和欧洲药品管理局 (EMA) 批准的寡核苷酸进行比较分析。
雇用后,新的动物服务官(ASO)将接受大约三个月的基础,在职培训期。此培训将包括乘车警察和动物防治人员来自邻近司法管辖区,以及在动物收容所进行的时间培训。此外,ASO将完成以下培训,以满足国家要求并发展为全面的领导者。
Fordbatten的财务贡献为基础科学研究提供了对约85%CLN3 Batten疾病人群和独特的C.569DUPG突变的基础科学研究的资助。“虽然我们以前的筹款工作已经将我们推进到了这一点,并证明了公众对研究的支持,但迫切需要额外的资金来继续势头,”前巴顿基金会戴维·卡恩(David Kahn)说。来自密歇根大学,罗莎琳德·富兰克林医学与科学大学以及其他合作伙伴的合作团队已使用类似于RNA(称为ASO)的合成核苷酸序列实现了突破性的进步。他们的研究表明,部分恢复了与Cln3 batten疾病有关的有缺陷的基因 - 一种神秘和致命的小儿神经退行性疾病。这项倡议的首席科学家米歇尔·黑斯廷斯(Michelle Hastings)博士解释说:“ ASO是专门为独特的C.569DUPG突变而设计的,这是通过科学家,临床医生和经验丰富的药物开发团队的合作努力实现的。我们对我们正在燃烧的步道充满热情,这为个性化基于RNA的治疗方法解锁了新的可能性。具体来说,该ASO是为纠正与该疾病有关的特别罕见的突变而设计的。团队勤奋而有条不紊地致力于制定针对CLN3 C.569DUPG突变的2个ASO临床试验的N,其中只有两名已知患者。“该团队在一流的时间表上提供了IND许可。正在同时进行大量研究,以完善对常见突变的ASO方法,目前的发现为基于ASO的治疗提供了希望。”在Fordbatten科学顾问委员会的指导下,一个热情而敬业的药物开发团队包括密歇根大学的Hastings实验室和Rosalind Franklin医学与科学大学,北卡罗来纳大学神经病学系,Vanguard Clinical,Biodev咨询,Keane Consulting,SciLucent和weimer Lab感谢过去七年来我们忠实的捐助者的支持,基金会探索治疗方案的使命就在这里。”
1的图,来自:Barbour等人。ASN年会2024年; 1。 Chiu等。 前疫苗。 2021; 12:638309; 2。 Yeo等。 Pediatr Nephrol 2018:33:763-777; 3.Hladunewich等。 ionis-fb-lrx,一种反义寡核苷酸,用于补充IgA肾病的补充因子B。 ERA 2024摘要#388; 4。 ionis新闻稿2022:https://ir.ionispharma.com/news-releases/news-release-details/ionis-presents-presents-pressent-posisity-phase-phase-phase-phase-phase-pata-patients-iga-iga-nephropathy; ASO =反义寡核苷酸; fb =因子B; Igan = Iga肾病; CFB =补体因子B; mRNA = Messenger RNA; MOA =行动方式; UPCR =尿蛋白/肌酐比; SC =皮下; Q4W =每4周一次; Gn =肾小球肾炎; ASO因子B与Ionis Pharmaceuticals合作ASN年会2024年; 1。Chiu等。 前疫苗。 2021; 12:638309; 2。 Yeo等。 Pediatr Nephrol 2018:33:763-777; 3.Hladunewich等。 ionis-fb-lrx,一种反义寡核苷酸,用于补充IgA肾病的补充因子B。 ERA 2024摘要#388; 4。 ionis新闻稿2022:https://ir.ionispharma.com/news-releases/news-release-details/ionis-presents-presents-pressent-posisity-phase-phase-phase-phase-phase-pata-patients-iga-iga-nephropathy; ASO =反义寡核苷酸; fb =因子B; Igan = Iga肾病; CFB =补体因子B; mRNA = Messenger RNA; MOA =行动方式; UPCR =尿蛋白/肌酐比; SC =皮下; Q4W =每4周一次; Gn =肾小球肾炎; ASO因子B与Ionis Pharmaceuticals合作Chiu等。前疫苗。2021; 12:638309; 2。Yeo等。 Pediatr Nephrol 2018:33:763-777; 3.Hladunewich等。 ionis-fb-lrx,一种反义寡核苷酸,用于补充IgA肾病的补充因子B。 ERA 2024摘要#388; 4。 ionis新闻稿2022:https://ir.ionispharma.com/news-releases/news-release-details/ionis-presents-presents-pressent-posisity-phase-phase-phase-phase-phase-pata-patients-iga-iga-nephropathy; ASO =反义寡核苷酸; fb =因子B; Igan = Iga肾病; CFB =补体因子B; mRNA = Messenger RNA; MOA =行动方式; UPCR =尿蛋白/肌酐比; SC =皮下; Q4W =每4周一次; Gn =肾小球肾炎; ASO因子B与Ionis Pharmaceuticals合作Yeo等。Pediatr Nephrol 2018:33:763-777; 3.Hladunewich等。ionis-fb-lrx,一种反义寡核苷酸,用于补充IgA肾病的补充因子B。ERA 2024摘要#388; 4。ionis新闻稿2022:https://ir.ionispharma.com/news-releases/news-release-details/ionis-presents-presents-pressent-posisity-phase-phase-phase-phase-phase-pata-patients-iga-iga-nephropathy; ASO =反义寡核苷酸; fb =因子B; Igan = Iga肾病; CFB =补体因子B; mRNA = Messenger RNA; MOA =行动方式; UPCR =尿蛋白/肌酐比; SC =皮下; Q4W =每4周一次; Gn =肾小球肾炎; ASO因子B与Ionis Pharmaceuticals合作
ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ ــــــــــــــــــــــــــــــــــــــــــــــــــ 摘要:基于 RNA 的疗法已成为调节基因/蛋白质表达和基因编辑的最有效治疗选择之一,具有治疗神经退行性疾病的潜力。然而,通过全身途径将核酸输送到中枢神经系统 (CNS) 仍然是一个主要障碍。为了克服这个缺陷,本综述重点介绍基于寡核苷酸的新策略,包括脂质体、碳纳米管、量子点、固体脂质纳米粒子、纳米脂质载体、聚合物纳米粒子、介孔二氧化硅、树枝状聚合物、适体、纳米抗体等。这些策略旨在通过不同的途径和跨血脑屏障的运输机制来克服这些障碍。正在进行的临床前和临床研究正在评估反义寡核苷酸 ASO 在多种遗传和获得性神经系统疾病中的安全性和有效性。当前的审查提供了有关 ASO 的新方法、临床前、临床证据和给药途径的最新信息。还描述了 FDA 批准的 ASO 在神经系统疾病中的给药情况。目前关于 ASO 在脑部疾病中的安全性和有效性的证据将有助于确定更广泛核酸的机会并加速这些创新疗法的临床转化。关键词:反义寡核苷酸、神经退行性、小干扰 RNA、微小 RNA、血脑屏障、治疗反应。