。cc-by-nc 4.0国际许可(未获得同行评审证明),他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权所有,该版本发布于2024年6月24日。 https://doi.org/10.1101/2024.06.20.599684 doi:Biorxiv Preprint
摘要:传染病,尤其是由结核分枝杆菌引起的结核病 (TB),对全球健康构成了重大挑战,2021 年报告的死亡人数为 160 万人,是单一传染源导致的最致命疾病。耐药性传染病的增加增加了寻找有效和安全的干预疗法的紧迫性。反义疗法使用反义寡核苷酸 (ASO),它们是与其 mRNA 靶标互补的短的、化学修饰的单链脱氧核糖核苷酸分子。由于其设计的靶标特异性和在 mRNA 水平上抑制致病基因,反义疗法作为一种潜在的治疗方法引起了人们的兴趣。这种类型的疗法目前用于多种疾病,例如癌症和遗传疾病。目前,关于使用 ASO 治疗传染病的研究有限,但正在稳步增加。本综述探讨了 FDA 批准和临床前测试的 ASO 作为传染病治疗的可持续性,以及 ASO 对化学修饰的适应性,从而减少副作用并改善药物输送;从而强调了 ASO 在治疗传染病方面的潜在治疗用途。
反义寡核苷酸 (ASO) 是短的单链合成 RNA 或 DNA 分子,而双链 RNA 核苷酸序列称为小干扰 RNA (siRNA)。ASO 与互补核酸序列结合,影响靶核酸的相关功能。它们代表了一类新兴药物,通过革命性的作用机制,旨在直接调节致病基因及其变体,为传统的“蛋白质特异性”疗法提供替代工具。大多数 ASO 旨在治疗孤儿遗传疾病,在大多数情况下,这些疾病会严重致残,并且仍然缺乏适当的治疗方法。为了将 ASO 转化为临床成功,不断的技术进步有助于克服多种药理学、毒理学和配方限制。因此,最近已经实施了化学结构,并探索了新的生物共轭和纳米载体配方策略。这项工作的目的是提供反义技术的概述,并对美国食品药品监督管理局 (FDA) 和欧洲药品管理局 (EMA) 批准的寡核苷酸进行比较分析。
骨关节炎(OA)是一种使人衰弱的疾病,没有批准的疾病改良疗法。在开发治疗的challenges中正在实现针对受影响关节的靶向药物。这导致了几个候选药物治疗OA的失败。在过去20年中,在反义寡核苷酸(ASO)技术中取得了重大进展,以实现在体外和体内靶向递送到组织和细胞的靶向递送。由于ASO能够结合特定的基因区域并调节蛋白质翻译,因此它们可用于纠正与某些疾病相关的异常内源机制。ASO可以通过关节内注射在本地传递,并可以通过天然的细胞摄取机制进入细胞。尽管如此,ASO尚未在OA治疗的临床试验中成功测试。最近对ASO的化学方法进一步改善了细胞摄取和降低的毒性。是基于锁定的核酸(LNA)的ASO,在肝炎和血脂异常等疾病的临床试验中显示出令人鼓舞的结果。最近,基于LNA的ASO在体外和体内都经过了OA的治疗性测试,并且有些在临床前OA动物模型中显示出有希望的联合保护作用。为了加速OA临床试验环境中ASO疗法的测试,需要进一步研究递送机制。在本评论文章中,我们讨论了目前正在临床前测试中的病毒,粒子,生物材料和化学修饰的疗法的机会。我们还解决了基于ASO的OA治疗疗法的临床翻译中的潜在障碍,例如与OA动物模型相关的局限性以及药物毒性的挑战。总的来说,我们回顾了已知的内容以及加速基于ASO的OA治疗疗法的翻译。
弗里德赖希共济失调是一种无法治愈的疾病,由 frataxin (FXN) 蛋白缺乏引起,主要由 FXN 基因内含子 1 中的 GAA 重复扩增引起。在这里,我们鉴定了与 FXN 前 mRNA 第一个内含子内的两个区域互补的反义寡核苷酸 (ASO),它可以使患者成纤维细胞中的 FXN mRNA 增加约 2 倍。通过在每个区域鉴定多个重叠的 FXN 激活 ASO、两个独立的 RNA 定量分析和多个管家基因的标准化,证实了 FXN mRNA 的增加。对删除 ASO 结合位点的细胞进行的实验表明,ASO 诱导的 FXN 激活是由间接效应驱动的。 RNA 测序分析表明,两种 ASO 诱导了相似的转录组范围变化,与野生型细胞的转录组不同。这种 RNA 测序分析未识别出 ASO 之间共有的直接碱基配对脱靶基因。错配研究确定了 ASO 中 FXN 激活所需的两个富含鸟苷酸的基序 (CCGG 和 G 4 )。我们的 ASO 的磷二酰胺吗啉寡聚体类似物不会激活 FXN,这表明存在 PS 骨架介导的效应。我们的研究表明,在采用基因激活等新机制的寡核苷酸研究中,多个详细的对照实验和靶标验证非常重要。
摘要:反义寡核苷酸 (ASO) 是一种越来越常见的药物。这些小的核苷酸序列被设计成精确靶向其他寡核苷酸(通常是 RNA 物种),并经过修改以保护它们免受核酸酶降解。它们的特异性归因于它们的序列,因此可以靶向任何已知的 RNA 序列。这些分子非常灵活且适应性强,因为它们的序列和化学性质可以定制生产。根据所使用的化学性质,它们的活性可能会发生显著变化,并且它们对细胞功能和表型的影响可能会有很大差异。虽然有些会导致靶 RNA 衰变,但另一些只会与靶标结合并充当空间阻滞剂。它们令人难以置信的多功能性是操纵核酸功能的几个方面及其过程的关键,并改变特定细胞类型或组织的转录组谱。例如,它们可用于修改剪接或掩盖目标上的特定位点。整个设计(而不仅仅是序列)对于确保 ASO 针对其目标的特异性至关重要。因此,确保考虑到药物设计和测试的整个过程至关重要。ASO 的适应性是一个相当大的优势,在过去几十年中,它使多种新药获得批准。这反过来又对患者的生活产生了重大而积极的影响。鉴于 COVID-19 大流行带来的当前挑战,有必要找到新的治疗策略来补充全球正在使用的疫苗接种工作。ASO 可能是一种非常强大的工具,可用于靶向病毒 RNA 并提供治疗范例。ASO 作为抗病毒剂的有效性的证明由来已久,但目前尚无任何分子获得 FDA 批准。在这次健康危机期间,RNA 疫苗的出现和广泛使用可能为开发市场上首批抗病毒 ASO 提供了理想的机会。在这篇评论中,我们描述了 ASO 的故事、它们的化学不同特性以及它们的特性如何转化为研究和临床工具。
Stoke 的最初重点是单倍体不足。基于对 RNA 科学的深入了解,Stoke 正在使用其 TANGO 方法制造称为反义寡核苷酸 (ASO) 的药物,这些药物可与前 mRNA 结合以上调或刺激蛋白质产生。这些 ASO 附着在过早终止密码子所在的区域,并阻止它们被包含在 mRNA 中。如果没有这个信号告诉细胞限制蛋白质产生,mRNA 将继续产生比它本来会产生的更多的蛋白质。虽然 ASO 同时与基因的健康副本和突变副本结合,但 ASO 不会导致突变副本产生任何生产性输出。健康副本会同时完成两者的工作,产生所需蛋白质量的 100%。
最近,ASO 疗法被发现可有效治疗脊髓性肌萎缩症 (SMA),这种疾病影响着近 6,000 名儿童中的 1 名。7 在开发 ASO 之前,许多患有严重 SMA 突变的个体活不过两岁。8 为这个群体开发 ASO 表明投资治疗罕见疾病具有巨大潜力,并强调确保持续投资、研究和获得这些治疗的重要性。
分子疗法使用基于核酸的治疗剂,成为对传统药物方法无反应的疾病条件的有前途的替代方法。反义寡核苷酸(ASO)和小干扰RNA(siRNA)是用于调节基因表达的两种众所周知的策略。靶向RNA的疗法可以精确地调节目标RNA的功能,具有最小的脱靶效应,并且可以基于序列数据进行合理设计。ASO和基于siRNA的药物具有在目标患者群体中使用的独特功能,或者可以作为患者抑制的N-ef-1治疗方法量身定制。反义疗法不仅可以用于治疗单基因疾病,而且还可以通过靶向涉及疾病发病机理的关键基因和分子途径来解决多基因和复杂疾病。在内分泌疾病的背景下,分子疗法在调节病原机制(例如缺陷胰岛素信号传导,β细胞功能障碍和激素失衡)方面特别有效。此外,siRNA和ASO具有下调过度活跃的信号传导途径,这些信号传导途径有助于复杂的,非发育性内分泌疾病,从而以分子起源解决这些疾病。ASOS还在全球范围内被研究为开发N-1-1疗法疗法的独特候选者。当寡核苷酸可以靶向患者的精确突变序列时,序列 - 特异性ASOS结合在N-OF-1方法中提供了非凡的精度。在这篇综述中,我们专注于内分泌系统的疾病,并讨论包括单基因β细胞糖尿病和肥胖症在内的糖尿病中潜在靶向RNA的治疗机会,包括综合征肥胖