摘要:减少主成分分析 (PCA) 输入的图像波段数量可确保某些材料不会被映射,并增加其他材料被明确映射到其中一个主成分图像中的可能性。在干旱地形中,如果只有一个输入波段来自可见光谱,则四个 TM 波段的 PCA 将避免氧化铁,从而更可靠地检测含羟基矿物。如果仅使用其中一个 S m 波段,则用于氧化铁映射的 Pw\ 将避免羟基。然后可以创建一个简单的主成分彩色合成图像,其中羟基、羟基加氧化铁和氧化铁的异常浓度在红绿蓝 (RGB) 颜色空间中明亮地显示。该合成允许对蚀变类型和强度进行定性推断,可以广泛应用。
机载遥感行业的特点是严格的期限、严格的预算限制以及对更高数据密度、更高精度和更低成本的不懈需求。最终用户,包括从城市地理信息管理员到进行传统路线规划的工程公司,都要求更快的周转时间和更准确的数据。因此,航空测量操作员必须寻求更先进的技术来减少数据处理时间和现场工作费用。不受限制航空摄影的环境条件的限制,机载激光扫描技术正在成为传统大规模地理空间数据捕获技术的一种有吸引力的替代方案。商用激光地形测绘系统的最新发展受到紧凑型加固固态激光器、高
激光雷达系统质量保证 – 任务规划 Kutalmis Saylam GeoBC 皇家注册处和地理基地 (CRGB) 分支机构 1 楼,3400 Davidson Ave,维多利亚,BC V8Z 3P8 加拿大 Kutalmis.saylam@gov.bc.ca 摘要 任务规划被视为机载光探测和测距 (LiDAR) 调查的一个重要方面,有助于全面质量保证 (QA) 体验。由于 LiDAR 是一种相对较新的空间数据采集方法,因此可能找不到有关如何为此类任务做准备的完整文档。一些公共和私人组织提供了抽象信息;但是,这些资源都没有提供完整记录和透彻的解释。在整个行业中,大多数机载 LiDAR 任务都是利用参与早期项目的人员的先前专业知识来准备的。正规培训并不常见,“在职学习”可能会给未来带来麻烦。此外,有各种类型的机载 LiDAR 调查需要特定的专业知识,但所掌握的专业知识可能不适用于不同类型的调查。建议现场和办公室经理在任务启动前非常仔细地评估项目要求和可用资源。有基本要求,也有不太重要的行动。由于机载调查的多变性,所有阶段都需要稳定观察,以防止潜在的代价高昂的变化或任务失败。各种项目为了尽快完成项目而遇到困难,导致忽视和跳过 QA 程序。仔细评估要求并适时规划对于成功完成任务至关重要。良好的任务规划需要仔细和广泛地考虑项目的各个阶段。因此,作者认为需要详细的机载 LiDAR 任务规划文档,以协助 LiDAR 社区。引言质量保证程序是指有计划和系统的流程,可确保产品或服务的有效性。这适用于所有形式的活动;设计、开发、生产、安装、服务和文档阶段。机载 LiDAR 任务规划的 QA 是指预测和管理活动,以确保所提议的任务能够以尽可能高的质量执行和完成。这些活动通常包括良好的任务规划、准确的系统配置、记录良好的数据处理和完整的项目交付。图 1 说明了一般 QA 模型流程图。
引言地理信息系统(Geological Information System,简称 GIS)的快速实施及其对准确和最新空间数据的无休止需求促进了自动和快速数据采集新方法的发展。理想情况下,操作员应该完全被数据收集系统取代,该系统识别空间对象、分析它们的关系并直接将它们存储在地理数据库中。必须集成各种数据收集传感器才能实现此目标并创建对现实世界的完整表示。定位和成像传感器可以通过视频和音频进行补充,以生成真正的多媒体数据集。许多大地测量学家、摄影测量学家和数据库专家已将他们的研究方向转向解决自动制图问题(Schenk 等,1991;Flaala 和 Hahn,1993;McKeown 和 McGlone,1993)。然而,进展缓慢,未能跟上政府机构、交通部门、公用事业公司和许多私营企业对数字地图数据日益增长的需求。三年前,我在
Airgon LLC 彻底改变了无人机数据提取 — GeoCue Group, Inc. 的全资子公司 AirGon LLC 宣布推出 Topolyst™,这是一款先进的桌面应用程序,旨在轻松从无人机在建筑和采矿现场收集的点云和/或激光雷达数据中提取信息和衍生产品。Topolyst 的投资回报几乎是立竿见影的 — 以前需要几天时间才能完成的现场数据收集现在借助 Topolyst 强大的自动化工具在几小时内即可完成。PhotoScan 和 Pix4D 等应用程序提供了从密集图像覆盖中生成点云的复杂方法。无人机直接收集激光雷达技术才刚刚兴起。Topolyst 是一套综合工具,它利用这些软件和传感器的数据进行高精度现场测量和体积分析。Topolyst 包括大量可视化模式(平面、剖面、3D)和工具,例如:
该标准的结构如下:主要术语和定义、参考文献和要求在标准主体中根据 ASPRS 标准模板进行说明,没有详尽的解释或说明。详细的支持指南和背景信息附在附件 A 至 D 中。附件 A 提供了与 ASPRS 相关但不满足当前数字地理空间数据要求的其他标准、规范和/或指南的背景摘要。附件 B 提供了实施该标准的精度/质量示例和总体指南。附件 C 提供了精度测试和报告指南。附件 D 提供了统计评估指南和计算植被和非植被地形的垂直精度的示例。
雅典国立技术大学。Argialas 教授(1977 年毕业,雅典国立技术大学(农村和测量工程),1979 年硕士,田纳西大学空间研究所,1985 年博士,土木工程,俄亥俄州立大学,路易斯安那州立大学助理教授,1985-1991 年)。Argialas 教授教授过照片解释、遥感、数字图像分析、地形分析、知识型专家系统、数值分析、PASCAL 编程和工程测量等课程。他曾担任美国、欧盟和希腊 30 多个研究项目的首席或联合首席研究员或研究员,并在国际期刊和同行评审会议上发表了 130 多篇与拟议项目科学领域相关的科学出版物。他有 1600 多次引用。他教授过 15 多门本科和研究生课程。他指导过 100 多篇本科和研究生论文,并且指导过七 (7) 篇论文,目前正在指导两 (2) 篇论文。Argialas 教授在遥感图像分析、模式识别和基于知识的专家系统方面拥有丰富的经验和重大贡献。在过去的几年里,他的研究兴趣集中在:对象检测和提取、监督和非监督分类、面向对象的图像分析、模式识别、专家系统、本体、地形建模和表示、变化检测和地图更新、环境地理过程的短期和长期监测。他最近协调了五个跨学科研究项目,目前正在四个跨学科的大学研究生硕士课程中任教。他曾担任 ASCE、ASPRS、IEEE、TRB、ISPRS、SPIE、WARM 的审稿人、ASPRS 的会议主席和 PE&RS (ASPRS) 的客座编辑。他还曾担任各机构研究提案的审稿人。(http://users.ntua.gr/argialas)
• AT - 空中三角测量 • ASPRS – 美国摄影测量与遥感学会 • CADD – 计算机辅助设计与制图 • CSDGM – 数字地理空间元数据内容标准 • DEM – 数字高程模型 • ESRI – 环境系统研究所 • FAC – 佛罗里达州行政法规 • FGDC – 联邦地理数据委员会 • FIPS – 联邦信息处理标准 • FCDOP – 佛罗里达县数字正射影像计划 • FDOT – 佛罗里达州交通部 • FPRN – 佛罗里达永久参考网络(由 FDOT 建立和维护) • FS – 佛罗里达州法规 • GeoTIFF – 栅格图像文件。GeoTIFF 完全符合 TIFF 6.0 规范,并且
• AT - 空中三角测量 • ASPRS – 美国摄影测量与遥感学会 • CADD – 计算机辅助设计与制图 • CSDGM – 数字地理空间元数据内容标准 • DEM – 数字高程模型 • ESRI – 环境系统研究所 • FAC – 佛罗里达州行政法规 • FGDC – 联邦地理数据委员会 • FIPS – 联邦信息处理标准 • FCDOP – 佛罗里达县数字正射影像计划 • FDOT – 佛罗里达州交通部 • FPRN – 佛罗里达永久参考网络(由 FDOT 建立和维护) • FS – 佛罗里达州法规 • GeoTIFF – 栅格图像文件。GeoTIFF 完全符合 TIFF 6.0 规范,并且
n履行其责任,使读者成为可能的最重要,各种各样和相关的文章,Lidar Magazine全年都参加会议和展览,不仅是要与行业和行业保持最新,还可以与预期的贡献者见面和匡威。我们享受了出乎意料的令人着迷的讨论,在某些情况下,这些会变成文章。今年,我们的小组计划参加超过15个重大的地理空间活动 - 如果您要参加一个,那么我们也很有可能会见面。可悲的是,我们不得不错过3月下旬在法国蒙彼利埃(Montpelier)举行的无人机2019年用户会议的Yellowscan Lidar,吸引了这位良好成熟的无人机集成商的许多客户;我们自己的刘易斯·格雷厄姆(Lewis Graham)发表了主题演讲。我还必须提及Nframes的用户会议,这是Stuttgart的启动,它提供了世界领先的软件,用于从图像中生成点云和派生产品,并且最近添加了LiDAR功能。2019年始于丹佛的Geo Week。尽管这是两个多月前,但它在我们的记忆中仍然刻在我们的记忆中,原因有两个:成功;以及第二次介绍激光雷达领袖奖。我们的LIDAR领导奖的合伙人,多元化的通讯宣布,美国50个州和33个国家的出席人数为1,682。在出席的人中,有53%的人首次参加了该活动。去年,ILMF和ASPRS年度会议是为2019年国际激光雷达映射论坛(ILMF)与MAPPS冬季会议和美国摄影测量和遥感学会(ASPRS)年度会议一起举行。