摘要 - 在这项工作中,我们检查了不对称的沙普利谷(ASV),这是流行的Shap添加剂局部解释方法的变体。ASV提出了一种改善模型解释的方法,该解释结合了变量之间已知的因果关系,并且也被视为测试模型预测中不公平歧视的一种方法。在以前的文献中未探索,沙普利值中的放松对称性可能会对模型解释产生反直觉的后果。为了更好地理解该方法,我们首先展示了局部贡献如何与降低方差的全局贡献相对应。使用方差,我们演示了多种情况,其中ASV产生了违反直觉归因,可以说为根本原因分析产生错误的结果。第二,我们将广义添加剂模型(GAM)识别为ASV表现出理想属性的限制类。我们通过证明有关该方法的多个理论结果来支持我们的学位。最后,我们证明了在多个现实世界数据集上使用不对称归因,并使用有限的模型家族进行了使用梯度增强和深度学习模型的结果进行比较。索引术语 - 解释性,摇摆,因果关系
所有样本中都包含分析,并且提供了RAW HIFI读取数据,以供客户更喜欢进行自己的分析。PACBIO HIFI全长16S数据使用QIIME2和DADA2进行质量过滤,并“将”“变形”到高质量扩增子单个变体(ASV)。ASV分类采用两种方法:针对基因组分类学数据库(GTDB R207)的共识一致性分类(使用VSEARZERCH)高一致性,以及使用三个数据库的基于贝叶斯的基于机器学习的分类(DADA2),使用三个数据库:GTDB R207,SILVA R207,SILVA RRNA DATABASE(v138)由核糖体数据库项目(RDP)补充,以更好地分类低充足的ASV。
在海上环境中,对各种活动的自主表面船(ASV)的使用和实施预计将推动其控制和控制的增长。尤其是,多个ASV的协调提出了新的挑战和机遇,需要在机器人技术,控制理论,通信系统和海洋科学的交集上进行跨学科的研究工作。可以集体使用这些船只的多种任务或目标,可以应用和组合不同的控制技术。这包括对机器学习的探索,以考虑以前认为不可行的方面。本评论提供了对协调的ASV控制的全面探索,同时解决了先前评论留下的关键差距。与以前的工作不同,我们采用了一种系统的方法来确保完整性并最大程度地减少文章选择中的偏见。我们深入研究了复杂的亚行动ASV世界,重点是定制的控制策略以及机器学习技术的整合以增加自治。通过综合最新进展并确定新兴趋势,我们提供了推动这一领域向前发展的见解,从而为未来的研究工作提供了最新技术的全面概述和指导。
在海上环境中,对各种活动的自主表面船(ASV)的使用和实施预计将推动其控制和控制的增长。尤其是,多个ASV的协调提出了新的挑战和机遇,需要在机器人技术,控制理论,通信系统和海洋科学的交集上进行跨学科的研究工作。可以集体使用这些船只的多种任务或目标,可以应用和组合不同的控制技术。这包括对机器学习的探索,以考虑以前认为不可行的方面。本评论提供了对协调的ASV控制的全面探索,同时解决了先前评论留下的关键差距。与以前的工作不同,我们采用了一种系统的方法来确保完整性并最大程度地减少文章选择中的偏见。我们深入研究了复杂的亚行动ASV世界,重点是定制的控制策略以及机器学习技术的整合以增加自治。通过综合最新进展并确定新兴趋势,我们提供了推动这一领域向前发展的见解,从而为未来的研究工作提供了最新技术的全面概述和指导。
•团队视频,20分钟的演讲和5分钟的法官问答•提早到达:在演示开始时间之前,要求团队到达10分钟•Team的ASV在演示2中是可选的。评估 - 团队村
10.00-10.15简介 - Romina d'Ascanio(Uniroma3)10.15-10.30自然恢复和生物多样性保护 - 苏珊娜·达·安东尼(Susanna d'Antoni)(意大利环境保护和研究所 - ISPRA - ISPRA)1.30-10.4510.30.45气候变化适应 - Simone-simone-11.10.10.10.10.10次ASV ASVIS-aid aisvians-as aids ASV景观和社会文化领域 - 安娜·劳拉·帕拉佐(Anna Laura Palazzo)(Uniroma3)11.00-11.15Q&A11.15-11.30头脑风暴会议简介,分为3个工作组 + 1个交叉切割在线组 - Elisa Avellini(Elisa Avellini(Uniroma3)(UNIROMA3)
摘要母体口腔微生物的渗透被认为在婴儿口服微生物群的获取和发展中起重要作用。在这项研究中,我们检查了448个母亲对4个月检查的舌头拭子样品。使用PACBIO单分子长读测序确定每个样品的细菌组成的全长16S rRNA基因和扩增子序列变体(ASV)方法。尽管婴儿口服微生物群与母口腔微生物群明显不同,但ASV与其亲生母亲共享的相对相对繁琐的含量为9.7%(范围为0.0%至99.3%),这比与无关的母亲共享的ASV高显着高。这种共同的丰度与婴儿的喂养方法密切相关,而不是其分娩模式或抗生素暴露,而配方奶粉的婴儿共享丰度高于独家母乳喂养的婴儿。我们的研究提供了母亲到侵入性口腔细菌传播的应变水平证据,并表明在配方蛋白喂养的婴儿中,孕产妇口服细菌的定殖更高。
摘要。海洋氮 (N 2 ) 固定是一种具有全球意义的生物地球化学过程,由一群特殊的原核生物 (固氮菌) 进行,但我们对其生态学的理解在不断发展。尽管海洋 N 2 固定通常归因于蓝藻固氮菌,但间接证据表明非蓝藻固氮菌 (NCD) 也可能很重要。一种广泛用于了解固氮菌多样性和生物地理学的方法是对 nifH 基因的一部分进行聚合酶链式反应 (PCR) 扩增,该基因编码 N 2 固定酶复合物固氮酶的结构成分。存在一系列生物信息学工具来处理 nifH 扩增子数据;然而,缺乏标准化实践阻碍了交叉研究比较。这导致错失了更彻底评估固氮菌多样性和生物地理学以及它们对海洋氮循环的潜在贡献的机会。为了解决这些知识空白,我们设计了一个生物信息学工作流程,以标准化高通量测序 (HTS) 产生的 nifH 扩增子数据集的处理。使用专门的 DADA2 流程高效一致地处理多个数据集,以识别扩增子序列变体 (ASV)。然后,一系列可定制的后流程阶段检测并丢弃虚假的 nifH 序列,并使用多个参考数据库和分类方法注释后续质量过滤的 nifH ASV。这个新开发的工作流程用于重新处理几乎所有来自海洋研究的公开可用的 nifH 扩增子 HTS 数据集,并生成一个全面的 nifH ASV 数据库,其中包含从 21 项研究中汇总的 9383 个 ASV,这些研究代表了全球海洋中的固氮菌种群。对于每个样本,数据库都包含从 Simons 合作海洋图集项目 (CMAP) 获得的物理和化学元数据。在这里,我们展示了该数据库在揭示主要固氮菌群的全球生物地理模式方面的实用性,并强调了海面温度的影响。工作流程和 nifH ASV 数据库为研究 nifH 扩增子 HTS 捕获的海洋 N 2 固定和固氮菌多样性提供了一个强大的框架。可以轻松添加针对研究不足的海洋区域的未来数据集,用户可以根据其特定重点调整所包含的参数和研究。工作流程和数据库分别在 GitHub(https://github.com/jdmagasin/nifH-ASV-workflow,最后访问时间:2025 年 1 月 21 日;Morando 等人,2024c)和 Figshare(https://doi.org/10.6084/m9.gshare.23795943.v2;Morando 等人,2024b)上可用。
使用NF核心工作流程的NF核/Ampliseq版本2.8.0进行了使用,利用Bioconda和Biocontainers项目的可重复的软件环境[35-38]。使用FASTQC(版本0.12.1)评估数据质量,并用MultiQC(版本1.18)进行汇总[39]。序列,以消除Phix污染,修剪读数(以275 bp为单位读取和265 bp的反向读数;丢弃的读数短于265 bp),以> 2的预期错误,以更短的读数,以纠正错误,以纠正poirors real paie paik&remoge paik&remoge paike&删除paike&remaas chimeras chimeras chimeras chimeras。最终,在所有样品中获得了3880个扩增子测序变体(ASV)[40]。保留了每个样品读数的29.81%和44.06%(平均36.8%)。ASV计数表包含
自主城市客运渡轮有可能增强城市流动性。然而,尽管近年来进步,但在城市水道上运行自动型地面车辆(ASV)仍然具有挑战性,这不仅是因为运输乘客将安全标准提升到了最佳状态。本文介绍了由挪威挪威科学技术大学(NTNU)在挪威特朗德海姆(NTNU)开发的自主城市乘客渡轮“ Milliampere2”。设计功能和测试结果,涵盖了与以人为本的设计,电池和推进,自动导航和控制,远程监控和控制以及风险评估有关的第五个研究问题的研究。在2022年举行的为期三周的“ Milliampere2”公共试验,在其运营环境的背景下,在一条确定且经过良好的城市水道上综合了研究结果。“ milliampere2”项目增加了越来越多的用例,证明了ASV用于客运运输的可行性。可以识别出未来研究的杰出挑战,包括人类自治团队,偏远的台阶操作以及与乘客,交通工具和远程操作员的互动。[doi:10.1115/1.4067370]