摘要 . 首先将水杨醛与乙二胺以 1:2 的摩尔比缩合制备偶氮席夫碱配体 (L1),然后将制备的亚胺化合物 (S1) 与 2,5-二氯苯胺反应,合成了一种新的 Ni(II)、Pd(II) 和 Pt(II) 配合物,并用于制备含有金属离子 Ni(II)、Pd(II) 和 Pt(II) 的配合物。利用紫外可见光、红外和核磁共振、摩尔电导、元素分析和质谱研究了合成化合物的结构特征。元素分析结果表明 [M:L] 化学计量为 1:1。根据摩尔电导研究,制备的所有最终产品都不具有电解性质。根据光谱研究,Ni(II)、Pd(II) 和 Pt(II) 的配合物可能具有方平面几何形状。然后评估了 Pd(II)、Ni(II) 和 Pt(II) 配合物对不同类型的革兰氏阴性菌 [ 大肠杆菌 ( ATCC 25922 )] 和阳性菌 [ 金黄色葡萄球菌 ( ATCC 25923 )] 的抗菌活性,结果显示对这些细菌具有良好的显著性。通过研究的 PC3 细胞系对正常细胞 WRL-68 来检查钯配合物对前列腺恶性细胞的细胞毒性作用。将使用 MOE 软件研究这些配合物的目标微生物的分子对接。
测试的代表性微生物:(部分概要)HyGenesis 系统:细菌 醋酸钙不动杆菌 1 真菌 黑曲霉 基于独特的抗菌技术,可有效控制各种处理物品和基质上的细菌、真菌、藻类 枯草芽孢杆菌 烟曲霉 和酵母。抗菌活性物质是在美国环境保护局和全球类似监管机构注册的猪布鲁氏菌 杂色曲霉 布鲁氏菌 出芽短梗霉 伯克霍尔德菌 洋葱毛壳菌。这种抗菌剂已安全有效地使用了三十多年。产气荚膜梭菌 镰刀菌 鲍氏棒状杆菌 粉红粘帚菌 本表是应众多要求编制的,要求提供该技术有效的微生物清单。我们选择了大肠杆菌 ATCC 23266 白色青霉菌,以提供测试谱,其中大肠杆菌 1 黄青霉菌 代表所有重要类型和猪嗜血杆菌 柑橘青霉菌 微生物种类。流感嗜血杆菌 秀丽隐杆线虫 肺炎克雷伯菌 ATCC 4352 绳状青霉 干酪乳杆菌 腐殖质青霉 乳酸明串珠菌 青霉菌 单核细胞增多性李斯特菌 变异青霉 耐甲氧西林葡萄球菌 金黄色葡萄球菌 黑根霉 微球菌 sp. Stachybotrys atra 耻垢分枝杆菌 黄木霉 结核分枝杆菌 趾间毛癣菌 痤疮丙酸杆菌 须毛癣菌 奇异变形杆菌 藻类 奇异变形杆菌1 鱼腥藻 B-1446-1C 普通变形杆菌 小球藻 铜绿假单胞菌 Gium sp. LB 9c 铜绿假单胞菌 PRD-10 波恩颤菌 LB143 铜绿假单胞菌 1 胸膜球菌属 LB11 洋葱假单胞菌 四尾假单胞菌 细长月牙藻 B-325 猪霍乱沙门氏菌 团藻属 LB 9 伤寒沙门氏菌 酵母菌 金黄色葡萄球菌(无色素)1 白色念珠菌 金黄色葡萄球菌(有色素)1 酿酒酵母 表皮葡萄球菌 1 病毒 粪链球菌 禽流感 变形链球菌 HIV B 万古霉素耐药肠球菌 (VRE) 甲型流感 野油菜黄单胞菌 SARS
大多数关于人类微生物组的初步研究主要集中在细菌群落上。鉴于真菌是泛质的,并且与人体共生,研究人员现在正在积极研究霉菌组在人类健康和疾病中的作用。测序技术的最新进步使真菌的社区概况得到了分析;但是,与宏基因组测序分析相关的复杂性突出了参考材料的需求。为了解决这个问题,ATCC开发了基因组和全细胞真菌模拟社区标准,其中包括10种不同的和临床相关的真菌。
ATCC衍生的SF9父母细胞系被解冻并传递,直到在适应SFRV减少的培养条件之前恢复到正常条件下恢复。通过在细胞颗粒和用过的培养基上进行基于反向转移酶(RT)PCR的测定法,常规监测培养物的生长和生存力,以及对SFRV信号的日志还原。降低SFRV 4周后,将所得培养物被镀至96孔板,而用过的培养基(未检测到RV信号后,确定的RV-无RV)用于促进克隆的生长。
500 mL Eagle的MEM(Sigma M4655)5 ml MEM非必需氨基酸(Gibco 11140-050)5 ml L-L-l-谷氨酰胺(Sigma G7513)5 ml p钠钠(Sigma s8636)(Sigma S8636)50 mL fetal bovine sote storme forter inter inter inter inter instermize insterim insterize instermize fellimize fortile comle c.不必将预筛选的苍白链球菌允许FBS用于SF1EP细胞的常规培养。细胞培养程序SF1EP细胞直接从ATCC®获得,源自原代细胞,其有限寿命约为27-30段。因此,重要的是要制作大型SF1EP细胞的冷冻种子库存。这些细胞具有上皮形的形态,当它们到达汇合时,它们的外观呈多边形或鹅卵石外观。这些低通道SF1EP生长缓慢,并在每二周进行1:5。我们具有SF1EP细胞的不朽细胞系,该细胞是从ATCC®细胞自发产生的。这些细胞的生长速度比原始细胞生长要快得多,生长到更高的密度,并在达到高密度时采用纺锤形的细胞形态。最初,这些支持T. pallidum的生长以及原始的SF1EP细胞,并且更容易大量生产。然而,在达到65的通道后,甲虫的生长会减少,应丢弃,并应融化细胞的较低传递培养。我们可以向希望启动体外培养的任何人提供此细胞系。这些是每周1:15的亚文化。使用无菌技术在生物安全柜中执行所有操纵。
测试项目中使用的微生物的培养物储存在瑞典食品局(SLV)的收藏中的-70°C下。所有菌株均通过特定的SLV数字识别。菌株要么是从食物或水样中隔离的,要么是从既定的培养物中购买的。细菌菌株的内部特征是API系统或其他手段在外部文化藏品中,例如ATCC(美国类型文化收藏),CCUG(哥德堡文化收集大学)CBS-KNAW(Centralbureau vor vor schimmelcultures),SVA(瑞典兽医机构)和FOHM(瑞典公共卫生机构)。
使用 CRISPR-Cas9 基因编辑技术将关键突变引入疾病相关细胞系。这些新型细胞系克服了使用传统渐进式药物选择方法开发的耐药癌症模型的几个缺点。这些缺点包括细胞系异质性、相关基因型的不稳定性、需要持续的药物压力来维持细胞系,以及缺乏对新开发的疗法的获得性耐药模型。获得性耐药的一个显著例子是黑色素瘤患者对 BRAF 抑制剂治疗产生耐药性。ATCC 科学家使用 CRISPR-Cas9 基因编辑技术将与获得性 BRAF 抑制剂耐药性相关的特定点突变直接引入
图2。在293 [HEK-293] DCAS9-KRAB细胞(ATCC®CRL-1573DCAS9-KRAB™)中对基因表达敲低的验证。抑制p53和setD9基因表达。表达靶向p53和setD9基因的GRNA的慢病毒分别用于感染293 [HEK-293] DCAS9-KRAB细胞。慢病毒没有GRNA表达作为对照。感染后24小时,将抗生素添加到培养基中,以富集抗生素耐药细胞。细胞颗粒并进行DDPCR基因表达定量分析。p53基因的表达(左)和setD9基因(右)在感染GRNA的细胞中受到了显着抑制。
在上述改进领域,ATCC采取了一步,通过CRISPR/CAS 9基因编辑创建了高敏机病毒生产细胞系。通过消除干扰素响应途径并通过删除/下调促凋亡基因来提高VPC的生存,从而提高病毒颗粒产量的设计策略,我们采用了两种方法。第一个是利用这样一个事实,即细胞依靠干扰素引起的途径作为对病毒感染的防御。干扰素信号传导的主要效应因子是通过STAT1蛋白。磷酸化和STAT1的产生自二聚体诱导该细胞内信号传导蛋白转移到细胞核上,从而导致许多细胞通过细胞产生许多抗病毒,抗增殖性和免疫调节反应。因此,从此