管制空域被划分为多个区域。航路区域是距离机场至少 50 公里的空域,相关空中交通管制员负责该区域。空中交通管制员必须接受飞机进入其区域;检查飞机,向飞行员发出指令、许可和建议,并将飞机移交给相邻区域或机场。当飞机离开分配给空中交通管制员的空域时,飞机的控制权将移交给控制下一个区域的空中交通管制员(或塔台空中交通管制员)。与许多现实世界的复杂系统一样,这种环境对操作员提出了多个并发要求,事实上,在航路空中交通管制环境中,空中交通管制员面临的系统包括来自不同方向、以不同速度和高度飞往不同目的地的大量飞机 [1]。空中交通管制员有两个主要目标。主要目标是确保管辖范围内的飞机遵守国际民用航空组织 (ICAO) 规定的分离标准。例如,最常见的间隔标准之一要求雷达控制下的飞机垂直间隔至少 1,000 英尺,水平间隔至少 5 海里。次要目标是确保飞机有序、迅速地到达目的地。这些目标要求空中交通管制员执行各种任务,包括监控空中交通、预测间隔损失(i
-提供服务:机场管制服务;飞行信息服务;警报服务;ATS 系统容量和空中交通流量管理 -通信 -ATC 许可和 ATC 指令 -协调(协调程序、工具和协调方法……) -高度测量和高度分配(地形净空 -分离:出发飞机之间的分离;出发飞机与到达飞机的分离;着陆飞机与前方着陆或出发飞机的分离;基于时间的尾流湍流纵向分离;减小的最小分离标准 -机载和地面安全网 -数据显示 -运行环境(模拟):获取有关运行环境的信息 确保运行环境的完整性;验证运行程序的时效性;交接 -提供机场管制服务:负责提供;交通管理过程(信息收集、观察、交通预测、交通监测、适应性和后续行动);航空地面灯光;机场管制塔向飞机提供信息;跑道使用中;机场交通管制;空中交通管制;管理出发飞机;管理到达飞机;管理 SVFR 交通;低能见度操作;具有先进系统支持的机场管制服务(AMAN、DMAN、自动冲突/入侵工具、警报和解决咨询工具、自动辅助
摘要:本文的主要目的是分析空中交通管制员 (ATCo) 发现潜在冲突的概率。ATCo 确保飞机的安全,其主要功能之一是避免碰撞。避免碰撞被称为分离规定,该术语意味着通过侧面、垂直和纵向最小分离来确保每架飞机之间的安全距离。空中交通管制员必须确保高水平的空域容量。工作绩效与对个人特征、知识、技能以及空中交通特征的高要求有关。除了分析检测潜在冲突的概率外,研究对这一安全事件影响最大的因素被认为具有特殊意义,因为 ATCo 代表空中交通管制系统的最后一个执行部门,未能检测到潜在冲突可能会导致飞机之间最小间隔距离被违反,甚至发生碰撞。为了实施这种方法,将使用具有高预测能力的贝叶斯网络。此外,还将使用基于知识和 ANSP 提供的实际操作数据的双重方法。与当前文献中包含的数据相比,这些数据是本研究的一大优势。
该项目包括安装一个行业标准的快速加油站,从现有的每天65公斤(铭牌容量)的绿色氢生产工厂中取出氢,位于詹达科特的Atco Ceih设施。耗资400万美元的AUD项目包括完整的氢加油站(HRS)的设计,建筑,安装和调试,并与Atco的Jandakot Operational Center的现有CEIH基础设施完全集成。项目成本不包括4.安装的HRS支持快速填充(按照SAE J2601 H70/T40协议)支持一小部分FCEV,最初是15辆车。HRS每天能够从空的(大约5kg车辆储罐)中完成多达五个FCEV车辆备票。加油速率最高每秒60克(每分钟3.6公斤),典型的加油大约需要6-8分钟。人力资源由氢压缩(来自CEIH存储),存储,冷却和分配以及所有相关的设备以及总体控制和安全系统组成。
ATCO EnPower(“ATCO”)很高兴推出拟议的 Barlow 电池储能系统(“BESS”)项目(“项目”)。ATCO 打算向阿尔伯塔省公用事业委员会(“AUC”)申请修改 Barlow 太阳能园区(“太阳能园区”)现有的批准和许可(AUC 程序 28309,决定 28309-D02-2023),以建造和运营一个新的 21.5 兆瓦(“MW”)电池储能设施,称为 Barlow BESS 项目。该项目将位于 SE 16-23-29 W4M,位于 2023 年 5 月开始运营的 27 兆瓦公用事业规模太阳能园区内。场地地址为卡尔加里 Barlow Trail SE 11111,位于 Barlow Trail SE 以西和 114 Avenue SE 以北。该场地最初被选为太阳能开发场地,因为它是一块开发潜力低的受干扰土地。 ATCO 是太阳能园区的所有者,并与 TERIC Power Ltd.(“TERIC”)合作协助开发 BESS 项目。
空中交通管制员 (ATCO) 将成为对航空运输系统影响最大的部门。ATCO 的职责是防止地面管制员提供的空中飞机相撞并克服可能出现的混乱。ATCO 是高风险职业群体之一,因此,其极高的认知工作量对飞行安全至关重要。然而,据观察,文献中关于在不同任务难度下有经验和没有经验的 ATCO 之间可能出现的认知工作量差异的研究相当不足。本研究介绍了认知工作量测量方法和 ATCO 认知工作量的研究。在本研究中,解释了确定认知工作量及其测量方法的重要性。此外,还介绍了与 ATCO 认知工作量相关的文献研究,特别是使用眼动仪的研究。
空中交通管制员(ATCO)将成为对航空运输系统影响最大的部门。ATCO 的职责是按照地面管制员的要求防止飞机在空中相撞并消除可能造成的混乱。作为高风险职业群体之一,ATCO 承担着非常高的认知工作量,这对飞行安全至关重要。然而,据观察,文献中对在不同任务难度下有经验和没有经验的 ATCO 之间可能出现的认知工作量差异的研究相当不足。本研究介绍了认知工作量测量方法和 ATCO 认知工作量的研究。在本研究中,解释了确定认知工作量及其测量方法的重要性。此外,还介绍了与 ATCO 认知工作量相关的文献研究,特别是使用眼动仪的研究。
目的:研究旨在开发一种更好的听觉警报设计,以提高空中交通管制员的态势感知能力。方法:参与者是七十七名合格的空中交通管制员。实验在爱尔兰航空局位于香农和都柏林的空中交通管制操作室进行。参与者被告知试验与 COOPANS 空中交通管制有关。使用两个受试者间因素(警报设计和经验水平)进行方差分析,以分析 ATCO 对三个关键事件的响应时间。使用 Bonferroni 检验对响应时间的平均差异进行事后分析。结果:在 STCA、APW 和 MSAW 中,ATCO 对声音警报和语义警报的响应时间存在显著差异。管制员的经验对 ATCO 对 STCA 和 APW 的响应时间没有显著的主效应。此外,警报设计和经验水平对 ATCO 对 STCA、APW 和 MSAW 的响应时间没有显著的相互作用。结论:结果表明,COOPANS ATM 系统中部署的声音警报为 ATCO 提供了 1 级态势感知,而语义警报不仅为感知警报提供 1 级态势感知,还提供 2 级和 3 级态势感知,以帮助 ATCO 了解关键事件,从而制定更合适的解决方案。因此,以人为本的语义警报设计可以显著加快 ATCO 对 STCA 和 APW 的响应。此外,语义警报可以通过加快新手和经验丰富的空中交通管制员的响应时间来缓解专业知识差异。
AESO 指示 ATCO 协助 AESO 向之前通知的利益相关者发出通知,这些利益相关者是 AESO 开展的参与者参与计划 5 的一部分。AESO 制定了一份一页的取消通知,供 ATCO 作为 AESO 通知分发给之前通知的利益相关者。取消通知的副本已发布到 AESO 网站 https://www.aeso.ca/stakeholder-engagement/transmission-projects/windy-hill-biomass-generation-plant- connection/,通知已于 2020 年 6 月 16 日在 AESO 利益相关者通讯中发布。取消通知和 AESO 利益相关者通讯通知的副本分别作为附件 1 和 2 包含在内。ATCO 已通知 AESO,它已于 2020 年 6 月 15 日寄出了其项目取消信和 AESO 的取消通知。ATCO 取消信的副本已作为附件 3 包含在内。
TMA(终端机动区)内的空中交通管制活动是一种密集的协作活动,至少需要两名空中交通管制员在共享工作区(见下图)工作,并与一组飞机进行通信。TMA 是受控航班在机场附近空域进场和离场的区域。空中交通管制 (ATC) 是由两名专业空中交通管制员在当地执行的协作工作。执行(EXEC)空中交通管制员(ATCo)与飞行员互动(通常使用语音),而规划(PLAN)ATCo 组织该区域的工作和飞机流量。规划管制员(图 1 左侧)负责组织和规划交通。这可能会导致改变飞机飞行计划,例如航向、速度、高度。此类更改的请求由 EXEC ATCo(通常使用语音)使用雷达屏幕发出(见图 1 右侧)。 EXEC ATCo 是负责处理地面/空中/地面通信、与飞行员通信和发布许可的管制员