脱水培养基 1-预期用途 用于牛奶和奶制品中的微生物平板计数。 2-成分 *典型配方(用 1 升水溶解后) 胰蛋白胨 5.0 g 酵母提取物 2.5 g 葡萄糖 1.0 g 脱脂牛奶 1.0 g 琼脂 15.0 g *配方可能会进行调整和/或补充,以满足所需的性能标准。 3-方法原理和程序说明 ISO 标准 1-3 建议使用补充有脱脂牛奶的平板计数琼脂来计数牛奶和奶制品中的中温或嗜冷微生物。该测试基于以下假设:每个活细胞、细胞对或小细胞簇与生长培养基混合后会形成一个可见的菌落,称为菌落形成单位 (CFU)。 4 微生物计数需要稀释样品,以达到所选方法可计数的菌群。目前已描述了几种可用于需氧菌落计数的技术:倾倒平板法、表面平板法、膜过滤法、螺旋板法、校准环法、滴板法。4 选择最合适的方法必须考虑监管机构的要求、要分析的样品类型、预期的微生物和污染程度。国际标准 ISO 4833-1 规定了一种用于中温菌落计数的倾倒平板法,适用于在规定了检测下限时需要可靠计数的产品或预期含有扩散菌落的产品。1 ISO 4833-2 规定了一种适用于含有热敏性微生物或专性需氧菌的产品的表面平板法。2 ISO 17410 描述了一种用于在 6.5°C 下培养的嗜冷菌落计数的表面平板法。 3 含脱脂牛奶的平板计数琼脂的配方符合 ISO 标准。1-3 胰蛋白胨为微生物生长提供氮、碳、矿物质和氨基酸。酵母提取物是维生素的来源,尤其是 B 族维生素。葡萄糖是碳和能量的来源。配方中包含的脱脂牛奶经测试不含抗生素。4 - 脱水培养基的使用方法 将 24.5 g 悬浮在 1000 mL 冷纯净水中。加热至沸腾并频繁搅拌以完全溶解,然后在 121°C 下高压灭菌 15 分钟。冷却至 47-50°C,充分混合并分配到无菌培养皿中。 5 - 物理特性 脱水培养基外观 米色、细腻、均匀、自由流动的粉末 溶液和制备培养基外观 淡米色、透明或略带乳白色 20-25 °C 时的最终 pH 值 7.0 ± 0.2 6 - 提供的材料 - 包装
牛奶脱水培养基1-基于多种代谢反应和维持乳酸细菌的微生物的分化。2 -c composition-典型公式 *(用1升水重建后)脱脂牛奶100.00 g litmus 0.75 g *可以调整和/或补充该公式以满足所需的性能标准。3-牛奶的解释和解释已被用来帮助分化生物的分化(尤其是在梭状芽胞杆菌属中)。1它也可用于维持和传播乳酸菌。litmus既是pH和氧化还原指标。牛奶中含有乳糖和三种主要蛋白质:酪蛋白,乳糖蛋白和乳球蛋白。在pH 6.5时,培养基为淡蓝色。当与产生乳酸和偶尔丁酸的乳糖发酵微生物接种接种时,它通过石蕊反应变成了粉红色的红色。一些细菌不会发酵乳糖,而是水解了酪蛋白,使中等碱性的碱性气味,使培养基变成紫色的蓝色。一些生物通过还原酶除去培养基中的氧气,而石榴石还原为白色leuco碱。peptonisation现象是由于酪蛋白的消化而引起的,酪蛋白通过清除培养基而表现出来。凝结物的破裂表明接种菌株的气体产生。乳糖发酵产生的酸会通过指示剂的颜色变化显示,当大量酸产生时,通过凝块的形成。,但雷内特可能会产生另一种形式的凝块。在这种情况下,凝块首先形成,然后像血液中的纤维蛋白血块一样,收缩并表达清晰的乳清。相比之下,酸血块不收缩。当细菌还会产生蛋白水解酶时,凝块可能会被化为蛋白酶。2 4 - 介质制剂的diractions用少量冷纯净的水混合100 g,制成光滑的糊状并添加更多纯净的水,直到获得10%的混合物(100 g/l)。连续搅拌混合物,将5-10毫升的混合物搅拌成合适的螺杆管。连续三天通过蒸(100°C)进行消毒60、45和80分钟。或者,在121°C下或在110°C下持续10分钟。必须避免过热以防止焦糖化。5-疗程特征脱水的介质外观蓝灰色,细,均质,自由流动粉末。溶液外观淡蓝色,粉红色蓝色沉淀物不透明。在高压灭菌期间,降低到白色的底座,但是,冷却后,氧气被吸收,原始颜色返回。最终pH在20-25°C 6.5±0.2 6-提供的pH值 - 包装
紫罗兰色红胆葡萄糖(VRBG)琼脂脱水且现成的培养基1-在食物,动物饲料和环境样品中检测和列举肠杆菌科的使用和枚举。2 – C OMPOSITION - TYPICAL FORMULA * ( AFTER RECONSTITUTION WITH 1 L OF WATER ) DEHYDRATED AND READY - TO - USE MEDIUM Peptone 7.0 g Yeast extract 3.0 g Sodium chloride 5.0 g Bile salts No.3 1.5 g Glucose 10.0 g Neutral red 30.0 mg Crystal violet 2.0 mg Agar 15.0 g *The formula may be adjusted and/or supplemented to meet the required performances 标准。3-方法的含量和解释肠杆菌科的解释通常被食品制造商视为卫生指标,因此用于监测采取的预防措施的有效性。这也反映在肠杆菌科作为卫生指标的几种国家和国际标准或标准中。紫罗兰色胆汁葡萄糖(VRBG)琼脂是由摩森植物1设计的,用于枚举肠杆菌科,通过将葡萄糖添加到紫罗兰红胆汁乳糖琼脂中。Mossel等人后来的作品。2,3证明可以省略乳糖,从而导致称为VRBG琼脂的配方。紫罗兰色红胆葡萄糖琼脂,以进行探测和枚举,并采用富集前的步骤,并采用肠杆菌科的MPN技术,当期望寻求的微生物预计需要复苏,并且预计需要的数量低于100次以下或每米级测试。葡萄糖的同化会导致培养基的酸化,因此胆汁盐和中性红摄取的沉淀。ISO 21528-2 5推荐使用倒板技术枚举肠杆菌科,而预计所需的菌落数量为每毫升100毫升或测试样品的每克。肽为细菌生长提供了重要的生长因子;酵母提取物是用于生长刺激的B-VITAMINS复合物的来源。氯化钠保持渗透平衡。培养基依赖于选择性抑制性成分晶体紫和胆汁盐,这些含量抑制了革兰氏阳性细菌的生长以及指标系统葡萄糖和中性红色的生长。肠杆菌科以红色粉红色至红色紫色菌落的生长,周围是红色降水带。非葡萄糖发酵罐(例如,假单胞菌,阿科杆菌,阿尔卡吉尼等)表现出透明的无色菌落。除肠杆菌科以外的一些革兰氏阴性细菌可能会生长,但可能受到覆盖程序的限制。4a -d介质制剂(脱水培养基)悬浮41.5 g在1000毫升冷纯净的水中。热量频繁搅动以完全溶解。不要自压盐,也不要过热。冷却至47-50°C,混合并分布成无菌培养皿。4B- d的介于培养基(准备就绪 - 使用烧瓶 /试管)的液体液化液在100±2°C或温度控制的水浴(100°C)中的高压釜中烧瓶 /管的含量。或者,可以将瓶子或管子放入装有水的罐子中,该水放在热板上并煮沸。在加热之前稍微松开盖,以允许压力交换。冷却至47-50°C,然后将培养基倒入无菌条件下的无菌培养皿中。5-疗程特征脱水的培养基外观绿色紫色,细,均匀,自由流动的粉末溶液和准备好的中等外观紫罗兰,在20-25°C时清除最终pH 7.4±0.2 6- M M M原始物质 - 包装
摘要。块体复合材料已融合其和(BMG)金属玻璃摘要。块体(BMGMC)具有竞争性的强度、硬度以及非常大的弹性应变极限。然而,它们缺乏延展性和随后的低韧性,这是由于玻璃结构固有的脆性,这使得它们具有良好的强度、硬度以及非常大的弹性应变极限。然而,它们缺乏延展性和随后的低韧性,这是由于玻璃结构固有的脆性,这使得它们具有良好的强度、硬度以及非常大的弹性应变极限。然而,它们缺乏延展性,随后的韧性较低,这是由于玻璃结构固有的脆性使它们容易屈服。然而,它们缺乏延展性,随后的韧性较低,这是由于玻璃结构固有的脆性使它们容易屈服。已经提出了各种可行的机制,最近,增材制造以抵消这种影响引起了广泛关注。有人提出,增材制造可以一步克服这些困难,因为该过程中固有的非常高的冷却速率对于玻璃形成至关重要。再加上精心选择的合金化学成分,这被认为是最好的方法,引起了广泛关注。有人提出,增材制造可以一步克服这些困难,因为在玻璃形成所必需的过程中,冷却速度非常高。这与精心选择的合金化学相结合,被认为是获得广泛关注的最佳方法。有人提出,增材制造可以一步克服这些困难,因为在玻璃形成所必需的过程中,冷却速度非常高。这与精心选择的合金化学相结合,被认为是获得广泛关注的最佳方法。有人提出,增材制造可以一步克服这些困难,因为在玻璃形成所必需的过程中,冷却速度非常高。这与精心选择的合金化学相结合,被认为是获得广泛关注的最佳方法。有人提出,增材制造可以一步克服这些困难,因为在玻璃形成所必需的过程中,冷却速度非常高。这与精心选择的合金化学相结合,被认为是获得广泛关注的最佳方法。有人提出,增材制造可以一步克服这些困难,因为在玻璃形成所必需的过程中,冷却速度非常高。这与精心选择的合金化学相结合,被认为是获得广泛关注的最佳方法。与精心选择的合金化学成分相结合被认为是最佳解决方案,引起了广泛关注。有人提出,增材制造可以一步克服这些困难,因为该过程中存在非常高的冷却速率,而这对于玻璃形成至关重要。与精心选择的合金化学成分相结合被认为是在单个步骤中制造具有优异性能的零件的最佳净形状解决方案。在本报告中,我们对此进行了描述。提出采用基于边到边匹配技术的精心选择的孕育剂以及精心控制的孕育程序的凝固处理来反映增强的机械性能。假设延展性结晶相的数量密度、尺寸和分布最能改善微观结构,从而改善性能。这意味着通过操纵孕育剂的类型、尺寸和数量来控制。据称,所提出的方法可以实现这一目标。提出采用基于边到边匹配技术的精心选择的孕育剂以及精心控制的孕育程序的凝固处理来反映增强的机械性能。据推测,延展性结晶相的数量密度、尺寸和分布最能改善微观结构,从而改善性能。这意味着通过操纵孕育剂的类型、尺寸和数量来控制。所提出的方法据称就是这样。提出采用基于边到边匹配技术的精心选择的孕育剂以及精心控制的孕育程序的凝固处理来反映增强的机械性能。据推测,延展性结晶相的数量密度、尺寸和分布最能改善微观结构,从而改善性能。这意味着通过操纵孕育剂的类型、尺寸和数量来控制。所提出的方法据称就是这样。凝固工艺采用基于边对边匹配技术的精心选择的孕育剂以及精心控制的孕育程序,旨在提高机械性能。据推测,延展性结晶相的数量密度、大小和分布最能改善微观结构,从而改善性能。这可以通过操纵孕育剂的类型、大小和数量来控制。所提出的方法就是针对这一点。凝固工艺采用基于边对边匹配技术的精心选择的孕育剂以及精心控制的孕育程序,旨在提高机械性能。据推测,延展性结晶相的数量密度、大小和分布最能改善微观结构,从而改善性能。这可以通过操纵孕育剂的类型、大小和数量来控制。所提出的方法就是针对这一点。延展结晶相的尺寸和分布最能改善微观结构,从而改善性能。这可以通过控制孕育剂的类型、尺寸和数量来控制。所提出的方法就是针对这一点。提出采用基于边对边匹配技术的精心选择的孕育剂以及精心控制的孕育程序的凝固处理来反映增强的机械性能。据推测,延展结晶相的数量密度、尺寸和分布最能改善微观结构,从而改善性能。这可以通过控制孕育剂的类型、尺寸和数量来控制。所提出的方法就是针对这一点。提出采用基于边对边匹配技术的精心选择的孕育剂以及精心控制的孕育程序的凝固处理来反映增强的机械性能。据推测,延展结晶相的数量密度、尺寸和分布最能改善微观结构,从而改善性能。这可以通过控制孕育剂的类型、尺寸和数量来控制。所提出的方法就是针对这一点。提出了一种凝固处理方法,该方法基于边到边匹配技术,采用精心选择的孕育剂以及精心控制的孕育程序,可以提高机械性能。据推测,延展性结晶相的数量密度、大小和分布最能改善微观结构,从而提高性能。这可以通过控制孕育剂的类型、大小和数量来控制。所提出的方法就是针对这一点。提出了一种凝固处理方法,该方法基于边到边匹配技术,采用精心选择的孕育剂以及精心控制的孕育程序,可以提高机械性能。据推测,延展性结晶相的数量密度、大小和分布最能改善微观结构,从而提高性能。这可以通过控制孕育剂的类型、大小和数量来控制。所提出的方法就是针对这一点。提出了一种凝固处理方法,该方法基于边到边匹配技术,采用精心选择的孕育剂以及精心控制的孕育程序,可以提高机械性能。假设延展性结晶相的数量密度、大小和分布最能改善微观结构,进而改善性能。这意味着可以通过控制孕育剂的类型、大小和数量来控制。所提出的方法论就是针对这一点的。提出了采用基于边对边匹配技术的精心选择的孕育剂以及精心控制的孕育程序的凝固工艺,以反映增强的机械性能。据推测,延展性结晶相的数量密度、尺寸和分布最能改善微观结构,从而改善性能。这意味着通过操纵孕育剂的类型、尺寸和数量来控制。据称,所提出的方法具有最大的潜力。