激活转录因子4(ATF4)是由蛋白激酶RNA样ER激酶(PERK)调节的,是一种压力诱导的转录因子,负责控制广泛的自适应基因的表达,从而使细胞能够承受压力的条件。然而,ATF4信号通路对气道再生的影响仍然鲜为人知。在这项研究中,我们使用小鼠气道上皮细胞培养模型来研究PERK/ATF4在呼吸道差异化中的作用。通过药理抑制和沉默,我们发现了PERK/ATF4在基础干细胞差异中的关键参与,从而导致分泌细胞数量减少。CHIP-SEQ分析揭示了ATF4与与成骨细胞分化和分泌细胞功能相关的基因调节元件的直接结合。我们的发现为ATF4在气道上皮分化中的作用及其潜在参与先天免疫反应和细胞适应压力的潜在参与提供了宝贵的见解。
肿瘤细胞由于加速生长而伴随着肿瘤微环境中的代谢应激(Payne,2022)。缺氧和营养供应不足会引发代谢应激,使肿瘤细胞重新编程为适应性机制。肿瘤细胞可以启动细胞适应性,重新调整其代谢表型以应对这些代谢压力(Jin and White,2007)。针对这些细胞适应性可能为抗肿瘤策略提供潜在的方法。为了应对各种细胞和代谢压力,激活转录因子 4(ATF4)会升高并作为调节器促进细胞适应生存(Wortel et al.,2017)。在癌症中,ATF4 已被确定为应激诱导的转录因子,并发现在一系列肿瘤中频繁上调。值得注意的是,已检测到 ATF4 在一些缺氧和营养不良的肿瘤区域高表达(Ye and Koumenis,2009)。 ATF4作为转录调控因子,广泛参与肿瘤中氨基酸代谢、自噬、氧化还原稳态和内质网应激的调控(图1、2)。本文全面总结了ATF4在肿瘤中的多种作用,并探讨了以ATF4为靶点的抗肿瘤策略的临床意义(表1)。
摘要 克罗恩病 (CD) 患者的肠粘膜被粘附侵袭性大肠杆菌 (AIEC) 异常定植。AIEC 感染后,宿主细胞中会诱导自噬以抑制细菌细胞内的复制。但其潜在机制仍然未知。在这里,我们研究了 EIF2AK4-EIF2A/eIF2 a -ATF4 通路在 AIEC 感染自噬反应中的作用。我们发现,用 AIEC 参考菌株 LF82 感染人肠上皮 T84 细胞会激活 EIF2AK4-EIF2A-ATF4 通路,磷酸化 EIF2AK4、磷酸化 EIF2A 和 ATF4 水平升高就是明证。EIF2AK4 耗竭抑制了 LF82 感染后自噬激活,导致 LF82 细胞内复制增加和促炎细胞因子产生增加。从机制上讲,EIF2AK4 耗竭抑制了 LF82 诱导的 ATF4 与多个自噬基因(包括 MAP1LC3B、BECN1、SQSTM1、ATG3 和 ATG7 )的启动子结合,进而抑制了这些基因的转录。LF82 感染野生型 (WT) 而非 eif2ak4 ¡ / ¡ ,小鼠激活了 EIF2AK4-EIF2A-ATF4 通路,诱导了肠细胞中的自噬基因转录和自噬反应。因此,eif2ak4 ¡ / ¡
我们首先通过在不断增加的柔红霉素浓度下繁殖来生成多种耐药白血病细胞系(K562 细胞)。柔红霉素是蒽环类化疗药物之一,是 AML 诱导疗法的标准治疗方法。我们发现每种细胞系都通过相同的机制获得耐药性:诱导 ABCB1。4 利用生物信息学技术,我们还观察到耐药细胞平行上调了一种转录程序,该程序类似于在氨基酸缺乏或缺氧应激细胞中表达的转录程序。综合应激反应 (ISR) 代表了此类应激源的常见适应性途径,其输出由转录因子 (TF) ATF4(激活转录因子 4)协调。 5 我们发现在耐药性 K562 中上调最多的 TF 基因包括 ATF4 以及它的几个转录靶点( ATF3 ,激活转录因子 3; CEBPB , CCAAT 增强子结合蛋白 β; DDIT3 , DNA 损伤诱导转录本 3)和编码其结合伙伴的基因( JUN , Jun 原癌基因; JUNB , JunB 原癌基因; CEBPG , CCAAT 增强子结合蛋白 γ; CEBPB、ATF3 和 DDIT3 )。这些表达数据表明细胞应激、 ATF4 和 ABCB1 上调之间存在联系。
摘要:蛋白质质量控制机制在癌症进展中发挥着重要作用,它提供适应性反应和形态稳定性,以应对全基因组拷贝数变异、非整倍体和构象改变的体细胞突变。这种对蛋白质质量控制机制的依赖产生了一种脆弱性,可以通过针对蛋白质质量控制机制的成分来利用这种脆弱性获得治疗益处。最近,含缬氨酸蛋白 (VCP),也称为 p97 AAA-ATPase,已成为癌细胞中可用于药物治疗的靶点,以影响它们对蛋白质质量控制的依赖性。在这里,我们表明 VCP 抑制剂会在几种卵巢癌细胞系中诱导细胞毒性,这些化合物与米非司酮协同作用,米非司酮是一种先前被证明会诱导非典型未折叠蛋白反应的药物。虽然临床上可达到的剂量的米非司酮会诱导较弱的未折叠蛋白反应,但它会增强 VCP 抑制剂 CB-5083 的细胞毒性作用。从机制上看,米非司酮阻断了 ATF6 在内质网 (ER) 应激反应中的细胞保护作用,同时通过 HRI (EIF2AK1) 介导的信号转导途径激活 ATF4 和 CHOP 的细胞毒性作用。相反,CB-5083 通过 PERK (EIF2AK3) 介导的信号通路激活 ATF4 和 CHOP。这种组合激活了 ATF4 和 CHOP,同时阻断了 ATF6 提供的适应性反应,从而增强了细胞毒性作用和协同药物相互作用。
综合应激反应 (ISR) 是细胞保护自己免受环境应激的重要机制。ISR 的核心是一组监测应激条件的相关蛋白激酶,例如 Gcn2 (EIF2AK4) 可识别营养限制,诱导真核翻译起始因子 2 (eIF2) 的磷酸化。Gcn2 磷酸化 eIF2 可降低大部分蛋白质合成,节省能量和营养,同时优先翻译应激适应基因转录本,例如编码 Atf4 转录调节因子的转录本。虽然 Gcn2 对细胞保护免受营养应激至关重要,并且其在人类中的消耗会导致肺部疾病,但 Gcn2 还可能导致癌症进展并在慢性应激期间促进神经系统疾病。因此,已经开发出特定的 ATP 竞争性 Gcn2 蛋白激酶抑制剂。在本研究中,我们报告了一种这样的 Gcn2 抑制剂 Gcn2iB 可以激活 Gcn2,并且我们探究了这种激活发生的机制。低浓度的 Gcn2iB 会增加 eIF2 的 Gcn2 磷酸化并增强 Atf4 的表达和活性。重要的是,Gcn2iB 可以激活缺乏功能性调节域或具有某些激酶域替换的 Gcn2 突变体,这些突变体源自缺乏 Gcn2 的人类患者。其他 ATP 竞争性抑制剂也可以激活 Gcn2,尽管它们的激活机制有所不同。这些结果为 eIF2 激酶抑制剂在治疗应用中的药效学提供了警告。旨在直接激活 Gcn2 的激酶抑制剂化合物,甚至是功能丧失的变体,可以提供缓解 Gcn2 和 ISR 其他调节剂缺陷的工具。
FATOSTATIN是否施加免疫调节作用取决于SREBP2介导的胆固醇代谢引起的ER应激的抑制。实时PCR结果表明,与对照组相比,TS组的EIF2AK3,ATF4,ATF6,ATF6,ATF6,ATF6,ATF6,ATF6,XBP1(XBP1的活性形式)显着上调,但仅由Fatostatin降低了这些基因,XBP1中的一种(图。7a)。同时,还发现Fatostatin抑制了与UPR相关基因DDIT3的表达(图7a)。此外,ER中反应性氧(ROS)水平的流式细胞仪和免疫荧光的结果也显示出fatostatin干预后相似的抑制作用(图7b-d)。进一步验证Fatostatin的免疫调节作用取决于XBP1介导的ER
已确定必需氨基酸 (EAA) 通过快速改变翻译因子的磷酸化状态来调节乳腺上皮细胞的蛋白质合成。然而,对 EAA 供应的长期转录反应研究得很少。选定了八种转录因子作为 EAA 通过氨基酸反应 (ATF4、ATF6)、丝裂原活化蛋白激酶 (JUN、FOS、EGR1) 和雷帕霉素复合物 1 的机制靶点 (MYC、HIF1A、SREBF1) 影响乳腺细胞功能的候选介质。目的是确定在施加 EAA 缺乏 24 小时后,这些候选基因的表达是否以及何时在牛乳腺上皮细胞原代培养物中受到影响,并评估 EAA 缺乏对蛋白质合成、内质网大小、细胞增殖和脂肪形成的影响。将分化细胞在代表所有氨基酸的正常生理浓度 (CTL)、低赖氨酸 (LK) 或低蛋氨酸 (LM) 的 3 种处理培养基中的 1 种中培养 24、40、48 或 60 小时。LK 和 LM 均抑制蛋白质合成并激活 ATF4 表达,表明经典的氨基酸反应途径已被触发。然而,LK 或 LM 对内质网大小没有影响,可能与 LM 上 ATF6 表达升高有关。早期反应基因 JUN 、 FOS 、 EGR1 和 MYC 的表达没有因 EAA 缺乏而升高,但 LM 降低了 EGR1 的表达。LM 还增加了 HIF1A 的表达。EGR1 和 HIF1A 的表达结果与观察到的细胞增殖率下降一致。不同时间点 SREBF1 表达对 LK 和 LM 的不同反应可能导致对脂肪生成率没有影响。这些发现表明,EAA 缺乏可能通过转录因子抑制乳腺蛋白质的合成和细胞增殖。
摘要虽然最近采用了许多靶向疗法来改善血液系统不良的治疗,但获得或内在的抗性却是其功效的重要障碍。因此,越来越需要识别新颖的,可靶向的途径,以进一步改善这些疾病的治疗。综合应力响应是一种响应失调的生长和代谢,在癌细胞中激活的信号传导途径,并且在暴露于许多疗法后,这似乎是一种这种可有针对性的途径,可改善对这些疾病的治疗。在这篇综述中,我们讨论了综合应激反应在血液系统恶性肿瘤生物学中的作用,其对靶向疗法的作用机理的关键参与,以及作为药理调节的目标,是血液学恶性肿瘤治疗的新策略。关键字:综合应力反应,PERK,PKR,GCN2,HRI,ATF4,血液恶性肿瘤,靶向治疗
适应环境压力的能力,包括治疗性损伤,有助于肿瘤的进化和耐药性。在次优条件下,综合应力反应(ISR)通过抑制胞质翻译来促进存活。我们表明,ISR依赖性生存还依赖于线粒体蛋白合成的上调,这是一种可以使用Mitoribosom-targeting抗生素来利用的脆弱性。因此,这种药物对MAPK抑制敏感,从而阻止了BRAF V600E黑色素瘤模型中抗性的发展。此外,这种治疗方法损害了黑色素瘤的生长,这种黑色素瘤表现出升高的ISR活性和对免疫疗法和靶向疗法的抗性。与此相吻合,ISR的药理学失活或ATF4的沉默挽救了对四环素的抗肿瘤反应。此外,暴露于强力霉素的黑色素瘤患者经历了耐药性病变的完整和持久反应。我们的研究表明,重新利用了靶向变形物的抗生素,为BRAF突变型黑色素瘤的靶向治疗提供了合理的打捞策略,并为NRAS驱动和免疫疗法的耐药性肿瘤提供了治疗选择。
