初步飞行计划 初步飞行计划包括运营商与将参与飞行的选定 eASP 商定飞行计划相关的操作(eASP 的选择基于交通复杂性等考虑因素)。这可以通过 FF-ICE 初步飞行计划 (PFP) 提交程序来支持,以制定如果提交则应可接受的飞行计划。在欧洲,NFPM 将向其他 NM 服务(例如 ATFM)提供可接受的 PFP,以促进提高飞行意图意识。提交 初步飞行计划以提交 eFPL 结束。此后,除非先取消航班,否则将不再接受 PFP 提交。提交完成后,NFPM 重新评估流程将继续确保商定轨迹与任何变化的条件或限制保持同步。通过提交服务(飞行计划 (eFPL) 更新程序),可以在整个飞行生命周期内继续更新 eFPL。起飞准备和飞行执行期间的持续规划活动在起飞准备的某个阶段,第一个空中交通管制单位将参与飞行,并发生过渡,在此之后,应使用飞行数据更新/修订程序对飞行数据进行任何进一步的更改。这包括支持传播飞行数据更新,这些更新源于空中交通管制运营等活动以及任何进一步网络级规划提案的合作协议。
3. 这些服务和职能由各个国家负责,各国自己设立了必要的机构和基础设施。在极少数情况下,两个或两个以上的国家会设立区域组织,代表其共同提供某些服务和职能:在欧洲,位于马斯特里赫特的欧洲空中航行安全组织控制中心根据该机构与有关国家达成的具体协议,为比荷卢三国和德国北部的上空提供空中交通管制。欧洲空中交通管制组织还负责建立和运营中央空中交通流量管理单位 (CFMU),该单位提供覆盖几乎整个欧洲的空中交通流量管理服务。
3,这些服务和职能是不同国家的责任,各国自己已经建立了必要的组织和基础设施。在极少数情况下,两个或两个以上国家会建立区域机构来代表它们共同提供某些服务和职能:在欧洲,EUROCONTROL 位于马斯特里赫特的控制中心为比荷卢三国和德国北部的上空空域提供空中交通管制,该机构与有关国家之间缔结的具体协议的框架。 EUROCONTROL 还负责创建和运营中央空中交通流量管理单元 (CFMU),该单元提供覆盖几乎整个欧洲的空中交通流量管理服务。
人工智能 (AI) 被认为是一种先进的技术,可以以高精度和精确度协助决策过程。然而,由于依赖复杂的推理机制,许多 AI 模型通常被评价为黑匣子。这些 AI 模型如何以及为何做出决策的复杂性往往无法被人类用户理解,导致人们对其决策的可接受性感到担忧。先前的研究表明,缺乏以人类可理解的形式提供的相关解释会使最终用户无法接受这些决策。在这里,可解释 AI (XAI) 的研究领域提供了广泛的方法,其共同主题是研究 AI 模型如何做出决策或解释决策。这些解释方法旨在提高决策支持系统 (DSS) 的透明度,这在道路安全 (RS) 和空中交通流量管理 (ATFM) 等安全关键领域尤其重要。尽管不断发展,但 DSS 仍处于安全关键应用的发展阶段。 XAI 带来的透明度提高,成为使这些系统在实际应用中可行、解决可接受性和信任问题的关键推动因素。此外,根据欧盟委员会目前授予的解释权以及世界各地组织的类似指令,认证机构不太可能批准这些系统用于一般用途。这种将解释渗透到现行系统中的迫切愿望为以 DSS 为中心的 XAI 研究铺平了道路。
ACARS 航空器通信寻址和报告系统 ACAS 机载防撞系统 ADS 自动相关监视 ADS-B 广播式自动相关监视 AIDC 空中交通服务设施间数据通信 AIP 航空信息出版物 ALRT 警报 AMSS 航空移动卫星服务 ASM 空域管理 ATC 空中交通管制 ATFM 空中交通流量管理 ATIS 自动终端情报服务 ATM 空中交通管理 ATN 航空电信网络 ATS 空中交通服务 ATSU 空中交通服务单位 C-ATSU 控制空中交通服务单位 CDA 当前数据机构 CNS 通信、导航和监视 CPDLC 管制员-飞行员数据链通信 D-ATSU 下游空中交通服务单位 DC 离场许可 DDA 下游数据机构 DFIS 数据链飞行信息服务 DLIC 数据链启动能力 DSC 下游许可 EOBT 预计起飞时间 ETA 预计到达时间 FANS 未来空中导航系统发展与过渡规划监测与(第二阶段)协调特别委员会 FASID 设施和服务实施文件FDPS 飞行数据处理系统 FIR 飞行信息区 FIS 飞行信息服务 FMS 飞行管理系统 FOM 性能图 GNSS 全球卫星导航系统 GPWS 近地警告系统
1.2.3.2 外部接口 ATCAS 的外部接口包括:a) 监视传感器:• PSR/MSSR 监视;• MSSR 监视;• ADS-B 和 ADS-C 数据链;• 多点定位;系统接收监视数据,处理信息并向控制器呈现空中情况的合成图像。b) 飞机控制器通过称为 CPDLC(控制器飞行员数据链通信)的特定协议与飞行员通信。系统接收轨迹和飞行计划信息并向飞行员发送命令。c) 相邻 ATCAS 相邻中心代表区域控制中心和进近控制。此接口主要发送和接收飞行计划协调消息,使用标准 ICAO 4444 消息或 OLDI 和 AIDC 协议。系统将与相邻中心共享监视数据。d) 时间参考系统 时间参考系统从 GPS 接收 UTC 时间并发送此信息以同步 ATCAS 工作站时间。e) 录音机 此接口用于将录音和回放系统活动与录音和回放同步。f) 操作员 他们由主控制员、助理、飞行数据操作员和技术/操作主管代表。g) AFTN 接口 当 AMHS 系统不可用时,它代表与 AFTN 的接口以接收和发送 ATS 消息。h) AMHS 接口 它代表发送和接收 ATS 消息的新接口。该系统具有通向 AFTN 的网关。i) ATFM 统一 此链接用于传输飞行计划和交通信息并协调措施以减少与流量管理相关的问题。j) 防御系统 该接口用于与防御系统交换监视信息和协调信息。
2020-2029 年网络战略计划由欧洲空中航行安全组织网络管理员和网络运营利益相关者(空中导航服务提供商、空域用户、机场和军方)共同制定。网络战略计划阐述了网络的长期前景,旨在确定实现 RP3 和后续发展网络性能目标的主要步骤。网络战略计划已于 2019 年 6 月 27 日获得网络管理委员会批准(如有监管变化,则需要重新协商),并已通过欧洲委员会关于 [xxx] 的决定正式通过。在未来 10 年内,预计空中交通将继续快速增长,需求也将波动。ATM 网络容量和可扩展性应相应发展,以限制预期的 ATFM 延迟增加。在此背景下,网络战略计划定义了为实现网络愿景而应遵循的战略方向,促进了以网络为中心的方法的必要性,这意味着网络中的所有 ATM 利益相关者都将能够认识到网络改进对所有人都有益,无论是在网络层面还是在本地层面。网络战略计划定义了未来十年网络发展的愿景,将其实施转化为 10 个战略目标,这些目标将通过涉及 NM 和所有运营利益相关者(ANSP、空域用户、机场和军队)的广泛协作决策过程 (CDM) 来实现。欧洲网络正经历容量紧缩,通过 RP3 影响整体网络容量,网络战略计划定义了在头五年内要实施的几项举措,以解决容量和飞行效率的改进问题。网络战略计划包括与空域重新配置、卓越运营和机场全面融入网络相关的具体行动,旨在确保在 RP3 期间妥善管理网络性能恢复。这是对未来十年总体战略愿景的补充。环境可持续性将得到进一步加强,并将根据 SES 绩效目标获得必要的优先考虑。ATM 网络的所有合作伙伴将合作,以实现更好的轨迹并加快实施支持绿色航空的创新。与此同时,支持可互操作且安全的信息管理系统和工具的新运营概念将成为帮助解决容量挑战和提供所需运营绩效的关键。这包括本地级别的系统和工具,以及将经历广泛现代化过程的网络管理器系统和工具。网络战略计划支持更专注于创新概念的 SESAR 研发,例如 4D 轨迹管理、目标时间、网络内机场的集成和 SWIM,同时确保在所有网络利益相关者中以协调的方式验证和实施新的运营概念。
