摘要:番茄果实在贮藏期间极易受到主要病原菌灰葡萄孢(B. cinerea)的侵染。最近的研究表明,自噬在植物防御生物和非生物胁迫中至关重要。自噬相关基因5(ATG5)在自噬体的完成和成熟中起关键作用,并被灰葡萄孢菌快速诱导,但ATG5在番茄采后果实抗灰葡萄孢菌中的潜在机制尚不清楚。为了阐明SlATG5在番茄果实抗灰葡萄孢菌中的作用,本研究采用CRISPR/Cas9介导的SlATG5敲除技术。结果表明,slatg5突变体对灰葡萄孢菌的感染更加敏感,病害症状更加严重,抗病酶几丁质酶(CHI)、β-1,3-葡聚糖酶(GLU)、苯丙氨酸解氨酶(PAL)、多酚氧化酶(PPO)等活性降低。此外,研究还观察到接种灰葡萄孢菌后,slatg5突变体中水杨酸(SA)信号相关基因SlPR1、SlEDS1、SlPAD4、SlNPR1的相对表达量高于WT,而茉莉酸(JA)信号相关基因SlLoxD和SlMYC2的相对表达量低于WT。这些结果表明,SlATG5 通过抑制 SA 信号通路和激活 JA 信号通路正向调控番茄果实对灰霉病菌的抗性反应。
抽象背景/目的:作为消化系统的非常普遍的恶性肿瘤,胃癌的发病率和死亡率逐年增加。据列表了螺旋病在癌症发育中的关键作用。多酚化合物姜黄素在包括GC在内的多种癌症类型中显示出明显的抗肿瘤作用。然而,姜黄素是否通过调节铁铁作用来参与GC肿瘤发生尚不清楚。材料和方法:用姜黄素(0、10和20μm)处理胃癌细胞AGS和HGC-27。通过CCK-8和LDH释放测定法评估了细胞活力和死亡。LC3B的表达。细胞内的铁铁(Fe 2+),GSH,MDA和脂质ROS水平。通过西部斑点确定了自动标记物(ATG5,ATG7,Beclin 1和LC3B),铁凋亡标志物(ACSL4,SLC7A11和GPX4)以及磷酸化(P)-PI3K,P-AKT和P-MTOR的磷酸化(P)-PI3K和P-MTOR。结果:姜黄素减弱了细胞活力,但刺激了GC细胞中的细胞死亡。姜黄素增强了GC细胞中的自噬,因为ATG5,ATG7,Beclin 1和LC3B的水平升高。此外,姜黄素上调铁,MDA,GSH和ACSL4水平,而下调脂质ROS,SLC7A11和GPX4水平,表明其刺激了GC细胞中的铁毒性。姜黄素降低了细胞中P-PI3K,P-AKT和P-MTOR水平。重要的是,铁铁蛋白抑制剂Ferrostatin-1推翻了姜黄素对GC细胞生存能力,死亡和铁毒性的影响。结论:姜黄素通过失活PI3K/AKT/MTOR信号传导来诱导自噬介导的铁铁毒性来抑制GC的发育。关键字:胃癌,姜黄素,铁毒素,自噬,pi3k/akt/mtor
天然产物经过充分的特征,可以具有药理学或生物学活性,可以对癌症治疗具有治疗性有益,这也为发现潜在的新型小分子药物提供了重要的灵感来源。在过去的三十年中,积累的证据表明,天然产物可以调节一系列关键的自噬信号通路,并在不同类型的人类癌症中显示治疗作用。In this review, we focus on summarizing some representative natural active compounds, mainly including curcumin, resveratrol, paclitaxel, Bufalin, and Ursolic acid that may ultimately trigger cancer cell death through the regulation of some key autophagic signaling pathways, such as RAS-RAF-MEK-ERK, PI3K-AKT-mTOR, AMPK, ULK1, Beclin-1, Atg5 and p53。综上所述,这些鼓舞人心的发现将通过针对未来癌症治疗的自动噬菌学的关键途径来利用更多天然化合物作为候选小分子药物。
摘要AMPK促进分解代谢并抑制合成代谢的细胞代谢,以在能量应激期间促进细胞存活,部分通过抑制MTORC1,这是一种合成代谢激酶,需要足够水平的氨基酸。我们发现缺乏AMPK的细胞显示出在氨基酸剥夺长期导致的营养应激期间凋亡细胞死亡增加。我们假定自噬受损解释了这种表型,因为一种普遍的观点认为AMPK通过ULK1的磷酸化启动了自噬(通常是亲生响应)。出乎意料的是,在缺乏AMPK的细胞中,自噬仍然没有受损,正如多个细胞系中的几个自噬读数所监测的那样。更令人惊讶的是,在氨基酸剥夺期间,不存在AMPK的ULK1信号传导和LC3B脂质增加,而AMPK介导的ULK1 S555的磷酸化(拟议启动自噬的站点)在氨基酸戒断或药理学MTORC1抑制后降低了ULK1 S555(拟议启动自噬)的磷酸化。此外,用化合物991,葡萄糖剥夺或氨基酸戒断引起的AICAR钝化自噬的AMPK激活。这些结果表明AMPK激活和葡萄糖剥夺抑制自噬。作为AMPK控制的自噬在意外方向上,我们检查了AMPK如何控制MTORC1信号传导。矛盾的是,我们观察到在长时间氨基酸剥夺后缺乏AMPK的细胞中MTORC1的重新激活受损。这些结果共同反对既定的观点,即AMPK促进自噬并普遍抑制MTORC1。这些发现促使对AMPK及其对自噬和MTORC1的控制如何影响健康和疾病进行了重新评估。此外,在延长氨基酸剥夺的背景下,它们揭示了AMPK在抑制自噬和MTORC1信号传导中的意外作用。关键字:mtor; S6K1; 4EBP1; lc3b; ULK1; ATG16L1;化合物991;葡萄糖剥夺; aicar;细胞存活缩写:AAS:氨基酸; ADP:双磷酸腺苷; AICAR:5-氨基咪唑-4-羧酰胺核糖核苷酸; AMP:单磷酸腺苷; AMPK:AMP激活的蛋白激酶; ATG14:自噬相关14; ATG16L1:自噬相关16,如1; ATG5:自噬相关5; BAFA1:Bafilomycin A1; DKD:双重击倒; DKO:双淘汰赛; ECL:增强的化学发光; LC3B:微管相关蛋白1A/1B轻链3B; MEF:小鼠胚胎成纤维细胞; MTORC1:雷帕霉素复合物1的机械靶标; MTORC2:雷帕霉素复合物2的机械靶标; p62:泛素结合蛋白p62,又名SQSTM1/secestosoms 1; S6K1核糖体蛋白S6激酶1; 4EBP1,EIF4E [真核起始因子4E]结合蛋白1; TEM:透射电子显微镜; ULK1:UNC-51样激酶1; VPS34,液泡蛋白排序34。
