(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2024年4月27日发布。 https://doi.org/10.1101/2024.04.27.591127 doi:Biorxiv Preprint
在LHC处的Atlas [3]在光核(γ + Pb)事件中已经研究了两粒子方位角相关性。这些结果表明明显的非零椭圆形和三角形流coe ffi cients,它们是用流体动力学模型来解释的。参考。[4],作者做出了一个具体的预测,即径向流量是夸克 - 格鲁恩血浆的特征之一,在γ + pb和p + pb碰撞中相似,并且可以通过产生的hadron的平均横向动量(P t)来测量。因此,通过γ + pb中的Atlas和P + PB碰撞中的Atlas测量了原代电荷Hadron的包含屈服与假性(η)和P t的函数[5]。图1显示了P t> 0 GEV的带电Hadron的平均p T,这是两个η区域中带电粒子多重性(N CH REC)的函数,[ - 1。6, - 0。8]和[0。8,1。6],对于γ + Pb和
Atlante Atlante 是 NHOA 集团 (NHOA.PA) 旗下的一家公司,NHOA 集团前身为 Engie EPS,是全球能源存储和电动汽车领域的参与者,该公司开发的技术能够推动向清洁能源和可持续移动的过渡,塑造下一代与地球和谐相处的未来。Atlante 正在开发南欧最大的快速和超快速充电网络,该网络由可再生能源、能源存储和 100% 车辆电网集成 (VGI) 提供支持。该公司计划到 2025 年在意大利、法国、西班牙和葡萄牙安装 5,000 个快速和超快速充电器,到 2030 年安装超过 35,000 个。Atlante 是 NHOA 集团(开发和投资网络的所有者和运营商)、Free2move eSolutions(充电技术供应商)和 Stellantis 汽车集团合作的成果。这将是一个开放的网络,Stellantis 客户享有特权访问权。有关更多信息,请访问 nhoa.energy/atlante
记录为“低”,低于一个标准差的记录为“未检测到”。没有表达值的蛋白质被记录为“不可用”丰度。从 IHC 获得的人体组织蛋白表达谱的自然格式是上述五个类别,因此没有调整。而对于从 HPA、GTEx 和 FANTOM5 整合的 RNA 共识表达谱,20 到 40 之间的共识标准化表达 (NX) 值被记录为“中”,高于此阈值的 NX 值被记录为“高”。同样,1-20 范围内的 NX 值被记录为“低”,低于
摘要:ATLAS 是 LHC 的两个主要实验之一,目的是研究物质的微观特性,以回答粒子物理学最基本的问题。在首次数据运行取得成功之后,LHC 通过三次加速器升级,突破了质心和亮度的能量极限,从而扩大了新发现和精确测量的可能性,最终形成了高亮度 LHC(HL-LHC)。 )。为了充分利用增加的亮度,计划对 ATLAS 内部探测器进行两次重大升级。第一次升级已于 2015 年初完成,插入了 IBL,即距离光束线仅 3.2 厘米的第四个像素层。第二次重大升级定于 2024 年进行,整个内部探测器将被完全由硅器件制成的全新内部跟踪装置取代,以应对 HL-LHC 的高粒子密度和强辐射环境,该装置在运行期间运行期间将提供 3000 fb −1,几乎是整个 LHC 计划内部光度平均值的十倍。本论文讨论的是
该安全关键装配解决方案通过提供多种紧固策略、作业排序、完整数据可追溯性和联网功能,支持“零故障”过程控制。具有即插即用功能和获得专利的快速备份单元 (RBU)。控制 Tensor DS、ST、STB、STR 和 ETX 系列。
我们感谢国家成像设施、西悉尼大学和昆士兰大学中心提供的设施和科学技术援助。B. Moroney(西悉尼大学纳米尺度小组)设计了蜥蜴脑支架,使 MRI 扫描成为可能。DH 获得了澳大利亚政府(APA#31/2011、IPRS#1182/2010)、加拿大国家科学与工程研究委员会(PGSD3-415253-2012)、魁北克自然与技术研究基金(208332)和澳大利亚国家成像设施(补贴访问补助金)的资助。ED 和 LM 获得了西班牙经济和竞争力部和欧洲发展区域基金(BFU2015- 68537-R)的资助。 ED 和 LM 是 Serra Húnter 研究员。MJW 和 JSK 感谢澳大利亚 39 研究委员会的持续支持。40
1 The Hopkins Centre, Menzies Health Institute Queensland, Griffith University, Meadowbrook, QLD, Australia, 2 School of Applied Psychology, Griffith University, Gold Coast, QLD, Australia, 3 Technical Partners Health (TPH), Griffith University, Nathan, QLD, Australia, 4 School of Applied Psychology, Griffith University, Mt Gravatt, QLD, Australia, 5 Innovation, Implementation and Clinical Translation in Health (IIMPACT in Health), Allied Health and Human Performance, University of South Australia, Adelaide, SA, Australia, 6 Neurosciences Rehabilitation Unit, Gold Coast University Hospital, Gold Coast, QLD, Australia, 7 Allied Health and Rehabilitation, Emergency and Specialty Services, Gold Coast Health, Gold Coast, QLD, Australia, 8 Psychology Department, Logan Hospital, Logan, QLD, Australia, 9 Rehabilitation Unit, Logan Hospital,澳大利亚昆士兰州的Meadowbrook和弗洛雷神经科学与心理健康学院10号,澳大利亚维克,澳大利亚海德堡。电子邮件:m.norwood@griffith.edu.au
图 1 MRE 成像和分析程序概述。第一步,通过气动驱动系统(Resoundant;明尼苏达州罗切斯特)将 50 Hz 的剪切波引入大脑。使用嵌入在 MRE 螺旋序列中的运动编码梯度捕获由此产生的组织变形,并沿三个独立轴(前 - 后、右 - 左和上 - 下)捕获位移数据。位移数据连同二元脑掩模一起提供给非线性算法,该算法将组织建模为异质粘弹性材料。子区域优化程序用于迭代更新有限元计算模型中的属性描述,以最小化模型位移和测量位移数据之间的差异。最后,将复杂剪切模量图转换为剪切刚度 μ = 2 j G * j 2/( G ' + j G * j ) 和阻尼比 ξ = G 00 /2 G 0 。提供特定主题的 T1 加权 MPRAGE 和 MRE T2 幅度图像,以说明空间标准化程序所需的图像