作为一种模型生物,果蝇在帮助我们理解大脑如何控制复杂行为方面具有独特的贡献。它不仅具有复杂的适应性行为,而且还具有独特强大的遗传工具包、日益完整的中枢神经系统密集连接组图谱和快速增长的细胞类型转录组谱。但这也带来了一个挑战:鉴于可用数据量巨大,研究人员如何查找、访问、整合和再利用 (FAIR) 相关数据,以便开发电路的综合解剖和分子图像、为假设生成提供信息并找到用于测试这些假设的实验试剂?虚拟蝇脑 (virtual fly brain.org) 网络应用程序和 API 为这个问题提供了解决方案,它使用 FAIR 原理整合神经元和大脑区域的 3D 图像、连接组学、转录组学和试剂表达数据,涵盖幼虫和成虫的整个中枢神经系统。用户可以通过文本搜索、单击 3D 图像、按图像搜索和按类型(例如多巴胺能神经元)或属性(例如触角叶中的突触输入)查询,按名称、位置或连接性搜索神经元、神经解剖学和试剂。返回的结果包括可在链接的 2D 和 3D 浏览器中浏览或根据开放许可下载的交叉注册 3D 图像,以及从文献中整理的细胞类型和区域的详细描述。这些解决方案具有可扩展性,可以涵盖脊椎动物中类似的图谱和数据集成挑战。
1可以ESM CCLM R1 I1P1 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 2 CAN ESM RE MO 15 R1 I1P1 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 3 CNR M CRCLIM M CRCLIM R1 I1P1 I1P1 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H4 8 H4 8 H4 44 8 H4 4444444444444444444444444444444444.PN44444 44444444444444444444444岁的 8 h4 8 h4 8 h4 8 h4 8 5 CNR M HIRHA M r1 i1p1 h8 h8 h8 h8 h8 h8 h8 h8 h8 6 CNR M RE MO 15 r1 i1p1 h2 8 h2 8 h2 8 h2 8 h2 8 h2 8 h2 8 h2 8 h2 8 7 CNR M RE GCM r1 i1p1 h8 h8 h8 h8 h8 h8 h8 h8 h8 8 CNR M WRF 3 81 r1 i1p1 h8 h8 h8 h8 h8 h8 h8 9 CNR M RAC MO r1 i1p1 h2 4 8 h2 4 8 h2 4 8 h2 4 8 h2 4 8 h2 4 8 h2 4 8 h2 4 8 10 CNR M HAD R EM r1 i1p1 h8 h8 h8 h8 h8 h8 h8 h8 h8 11 EC EA RTH crCLIM r1 i1p1 h8 h8 h8 h8 h8 h8 h8 h8 h8 12 EC EA RTH HIRHA M r1 i1p1 h8 h8 h8 h8 h8 h8 h8 h8 h8 13 EC EA RTH RAC MO r1 i1p1 h4 8 h4 8 h4 8 h4 8 h4 8 h4 8 h4 8 h4 8 h4 8 14 EC EA RTH RCA r1 i1p1 h8 h8 h8 h8 H8 H8 H8 H8 H8 H8 H8 H8 15 ec EA rth WRF 3 61 R1 I1P1 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 rth Crclim R3 I1p1 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 17 EC EA e e e e e e e e e e e e e rth hirha m r3 i1p1 RTH RAC MO R3 I1P1 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 RCA R3 I1P1 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 20 EC EA RTH CCLM R1 rth CCLM R1 rth rth rth rth H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 22 ec EA RTH HIRHA M R1 2I 1P1 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 H8 23 EC EA RETH RE MO 15 rth rth rth r1 r1 2i 1p1 H2 4 8 H2 4 8 H2 4 8 H2 4 8 H2 4 8 H2 4 8 H2 4 8 H2 4 8 H4 8 H2 4 8 H2 4 8 H2 4 8 H2 4 8 H2 4 8 H2 4 8 H2 4 8 H2 4 8 H2 4 8 H2 4 8 H2 4 8 H2 4 8 8 H2 4 8 8 H2
全球太阳能数据是由Vortex开发的,用于Irena Global Atlas的可再生能源。它们代表了20年内太阳辐照估算的长期和每月平均值。使用来自各种来源的卫星数据(例如,诸如Goddard Goddard Space Flight Center,Weather Cheaper Research and wereec and werfff fromice conterec and werfff the Weatherecress and werffff fromice Chopely and werff),使用来自各种来源的卫星数据,例如地静止的操作环境卫星(GOOS),多功能运输卫星(MTSAT)和HIMAWARI进行了补充。参数化包括吸收,云颗粒和气溶胶。数据集包括全局水平照射,最佳角度的全局倾斜照射,直接的正常照射和弥漫性水平照射。
时空婴儿专用的大脑图石对于早期大脑发育的神经影像学分析至关重要。然而,由于获得高质量婴儿脑磁共振(MR)图像的困难,在处理获得的数据时面临重大的技术挑战,以及对大型样本量的需求,现有的婴儿地带通常以模糊的外观和稀疏的时间点构建。为了准确研究早期的大脑发育,高质量的空间婴儿脑图集是高度期望的。为了解决这个问题,我们基于UNC/UMN婴儿连接项目(BCP)数据集(Howell等,2019),为婴儿大脑构建了4D体积图谱,称为UNC-BCP 4D婴儿脑体积图集。这个4D地图集具有很高的空间分辨率,较大的年龄范围覆盖范围和密集采样的时间点(即0、1、2、3、4、5、6、7、7、8、9、9、10、11、11、12、15、15、18、11、24个月)。具体来说,使用T1W和T2W序列的542次MRI扫描,从240名婴儿到26个月的扫描年龄,用于我们的ATLAS结构。同时,将广泛使用的FreeSurfer Desikan皮层拟化方案(Desikan等,2006)映射到我们的4D地图集,并手动划定了皮层结构以促进基于ROI的分析。所有图像都扭曲成MNI空间(Mazziotta等,1995)。这个具有非常密集的时间点的4D婴儿体积图集将极大地促进对产后早期阶段中动态和关键神经发育的理解。
欧洲心脏病学会:2019 年心血管疾病统计数据 代表地图集写作小组 欧洲心脏病学会心脏病学图集是欧洲心脏病学会下属部门欧洲心脏机构编纂的心血管统计数据汇编 与欧洲心脏病学会成员国的国家协会合作开发 作者:Timmis A 1(写作小组主席)、Townsend N 2、Gale CP 3、Torbica A 4、Lettino M 5、Petersen S 1、Mossialos EA 6、Maggioni AP 7、Kazakiewicz D 8、May H 9、De Smedt D 10、Flather M 11、Zuhlke L,12 Beltrame J 13、Huculeci R,8 Tavazzi L 14、Hindricks G 15、Bax J 16、Casadei B 17、 Achenbach S 18 , Vardas P 8 附属机构:1 英国伦敦巴兹心脏中心和玛丽女王大学 2 英国巴斯大学卫生部 3 英国利兹大学医学研究委员会生物信息学中心、利兹心血管和代谢医学研究所 4 意大利米兰博科尼大学社会与政治科学系 5 意大利蒙扎圣赫拉尔医院 6 英国伦敦伦敦政治经济学院卫生政策系 7 意大利佛罗伦萨意大利医院心脏病专家协会中心 (ANMCO) 8 比利时布鲁塞尔欧洲心脏健康研究所欧洲心脏病学会卫生政策部 9 比利时根特大学公共卫生部 10 英国诺里奇东英吉利大学诺里奇医学院 11 南非开普敦大学红十字儿童医院 12 澳大利亚伊丽莎白女王医院和阿德莱德大学 13澳大利亚阿德莱德 14 意大利科蒂尼奥拉玛利亚塞西莉亚医院 - GVM 护理与研究中心 15 德国莱比锡大学 16 荷兰莱顿大学医学中心
摘要 锈病,包括叶锈病、条锈病/黄锈病和秆锈病,严重影响小麦 (Triticum aestivum L.) 的产量,每年造成巨大的经济损失。培育和推广具有遗传抗性的品种是控制这些疾病最有效和可持续的方法。小麦育种者用于选择抗锈病的遗传工具包已迅速扩展,利用最新的基因组学、作图和克隆策略鉴定了大量基因位点。本综述的目的是建立一个小麦基因组图谱,全面总结已报道的与抗锈病相关的基因位点。我们的图谱总结了过去二十年 170 篇出版物中针对三种锈病绘制的数量性状基因位点 (QTL) 和特征基因。根据最新的小麦参考基因组 (IWGSC RefSeq v2.1),总共有 920 个 QTL 或抗性基因被定位在小麦的 21 条染色体上。有趣的是,26 个基因组区域包含多个锈病基因座,表明它们可能对两种或多种锈病具有多效性。我们讨论了一系列利用这些丰富的遗传信息来有效利用抗性来源的策略,包括利用基因组信息来堆叠理想的和多个 QTL,以开发具有增强的抗锈病小麦品种。
摘要 脑膜瘤是最常见的颅内良性肿瘤,被认为起源于蛛网膜颗粒的蛛网膜帽细胞。我们试图根据治疗前的 MRI 开发基于人群的图谱,以探索颅内脑膜瘤的分布,并探索不同位置颅内脑膜瘤发展的风险因素。2006 年至 2015 年期间,所有被诊断为颅内脑膜瘤并转诊至神经外科的来自特定收集区域的成年人(≥ 18 岁)均有资格纳入。治疗前 T1 增强 MRI 加权脑部扫描用于半自动肿瘤分割,以开发脑膜瘤图谱。统计分析中使用的患者变量包括年龄、性别、肿瘤位置、WHO 分级和肿瘤体积。共确定了 602 名颅内脑膜瘤患者,以从广泛而明确的收集区域开发脑肿瘤图谱。脑膜瘤在脑内的空间分布并不均匀,额区肿瘤较多,尤其是旁矢状面、大脑镰前部、额叶底和中颅窝。超过 2/3 的脑膜瘤患者为女性(p < 0.001),她们患多发性脑膜瘤的可能性也更大(p < 0.01),而男性患幕上脑膜瘤的可能性更大(p < 0.01)。肿瘤位置与年龄或 WHO 分级无关。脑膜瘤的分布在脑内呈现从前到后的梯度变化。脑膜瘤在普通人群中的分布并不依赖于组织病理学 WHO 分级,但可能与性别有关。
› 1_Tech_Spec_Sheets PDF TrimbleR EMPOWER 资产跟踪... EM112 条码成像仪 + UHF RFID 模块,... 邮政、英国皇家邮政、美国智能邮件。2D 堆叠:Codablock A,...
• 无需额外安装成本。 • 节省占地面积。 • 使用节能环保的制冷剂 R410A,降低运营成本并确保零臭氧消耗。 • 低压降热交换器横流技术,节省能源和成本。 • 由于无损冷凝水排放,压缩空气零浪费。 • 先进的控制功能可确保在任何情况下空气干燥,并防止低负荷时结冰。 • 压力露点为 3°C/37°F(20°C/68°F 时相对湿度为 100%)。
社会科学................................................................................................................................ 242