关于土壤水分 - 预应反馈的迹象的争论仍然开放。一方面,使用全球粗分辨率气候模型的研究发现了强烈的积极反馈。但是,这样的模型不能明确表示对流。另一方面,使用KM规模的区域气候模型和明确对流的研究报告了负反馈。然而,在这种模型中规定了大规模的循环。这项研究使用具有明确对流的全局,耦合的模拟进行了重新审视土壤水分 - 沉淀反馈,并将结果与粗分辨率模拟与参数化对流进行了比较。我们发现,大多数要点的显着差异,反馈较弱且占据显式对流的负面差异。与粗分辨率模型相比,在存在土壤湿度异质性的情况下,在潮湿的方向上更经常在潮湿的状态下,在土壤水分异质性的情况下触发对流的模型。进一步的分析表明,不仅土壤水分和蒸散量之间的反馈,而且蒸散量和降水之间的反馈也较弱,与观察结果更好地一致。我们的发现表明,粗分辨率模型可能不太适合研究土地上气候变化的各个方面,例如干旱和热浪的变化。
摘要 - 大气光散射包含复杂的物理过程,包括各种散射机制和光学参数。应对破译这种现象的计算密集任务所带来的挑战,这项研究引入了有效的实时仿真策略。所提出的方法采用物理驱动的大气建模,利用统一的相位函数模仿瑞利和MIE散射现象。使用射线制定的概念来解决散射积分,将散射积分近似并离散。基于不同光源的特征,确定了准确的射线建设长度,从而简化了光路的计算轨迹。此外,纹理抖动的引入增强了初始采样位置的随机性。阴影地图算法擅长生成阴影映射纹理,从而消除了阴影区域内的光计算的需求,从而减少了样本数量和计算工作负载。最后,颜色合成用于确定在各种雾密度条件下大气的渲染颜色。实验结果表明,与其他先进的光散射渲染方法相比,这种方法可显着提高渲染效率,并实现实时渲染,同时保持逼真的光散射效果。
AAOL-BC被用来进行实验,该实验试图测量激光束上的大气诱导的抖动。波前的激光束,该激光束在两架飞机之间在不同的高度和分离处繁殖。提出了用于提取湍流诱导抖动的数据处理程序,并使用所得的抖动和高阶波浪畸变来提取湍流参数,例如c n 2和r 0。使用这些各种方法的湍流数量与文献进行了比较。表明,在较低高度和大型飞机分离处收集的数据导致高达5μrad的倾斜到激光束。使用测得的大气诱导的抖动,提取了C N 2值,与文献中普遍存在的模型(例如HV57)融合在一起。使用高阶波前统计近似C n 2的值高于由于飞机周围的空气光学和空气声环境污染而导致的湍流模型所预测的值。
6贝茨和富勒,天气战士,9-14;帕特里克·休斯(Patrick Hughes),《天气局的一个世纪:国家气象局的出生与成长历史》,1870- 1970年(纽约:戈登和漏洞,科学出版社,1970年),第1-73页;唐纳德·惠特纳(Donald Whitnah),《美国气象局历史》(乌尔巴纳:伊利诺伊大学出版社,1961年)。
教育价值:在这个以地球科学为重点的项目中,孩子们将了解我们星球的大气层对地球上生命的重要性,并将地球大气层的成分与太阳系中其他行星的大气层成分进行比较。他们学习如何使一个星球适合生命存在,并探索大气粒子对日落和彩虹颜色的影响。最后,他们有机会建立一个紧凑的太阳系行星大气层比较图,包括发射出去探索这些行星的探测器的图像。
摘要:我们对大气流动的分层湍流和小尺度湍流状态进行了尺度分析,重点关注中间层。我们区分了旋转分层宏观湍流 (SMT)、分层湍流 (ST) 和小尺度各向同性 Kolmogorov 湍流 (KT),并指定了这些状态的长度和时间尺度以及特征速度。结果表明,浮力尺度 (L b ) 和 Ozmidov 尺度 (L o ) 是描述从 SMT 到 KT 的转变的主要参数。我们采用浮力雷诺数和水平弗劳德数来表征中间层的 ST 和 KT。该理论应用于高分辨率大气环流模型的模拟结果,该模型采用 Smagorinsky 型湍流扩散方案进行亚网格尺度参数化。该模型使我们能够推导出 KT 状态下的湍流均方根 (rms) 速度。我们发现湍流 RMS 速度在夏季有一个最大值,在冬季有两个最大值。冬季 MLT 中的第二个最大值与二次重力波破碎现象有关。该模型的湍流 rms 速度结果与基于 MF 雷达测量的完全相关分析非常吻合。提出了一种基于中尺度直接能量级联思想的中尺度水平速度新尺度。后者对中尺度和小尺度特征速度的发现支持了本研究提出的观点,即中尺度和小尺度中间层动力学在统计平均值上受 SMT、ST 和 KT 控制。
作者:VR Després · 2012 · 被引用 1482 次 — 背景气溶胶特性。使用荧光气动颗粒物测量仪测量:FLAPS 性能的灵敏度。国防研究机构...
with这种经营经验级别3(OE-3)文件是为了提高人们对整个能源部(DOE)企业中氧气不足氛围的潜力的认识,并通过在DOE设施的这种重要危害的运营经验中促进学习经验。DOE集成安全管理(ISM)政策的七个指导原则和五个核心功能(DOE策略450.4A,综合安全管理系统政策)以及10 CFR第851部分的危害识别和预防要求,工人安全和健康计划为分析这种危害提供基础,并建立可能的危害,并建立潜在的伤害和预防潜在的伤害。b ackground一种可能引起窒息的氧气不足的气氛,由职业安全与健康管理(OSHA)定义为含量小于19.5%的氧气。OSHA认为这立即危害生命或健康或IDLH。虽然氧气不足的气氛经常与狭窄的空间相关,但潜在的潜力在整个DOE的研究,生产和维护操作中都更加广泛。这包括在实验室中使用惰性气体,制造环境以及压缩气缸的室内存储(例如氮,氧气,氧化二氧化碳,
资源与能源经济局提供能源预测(资源与能源经济局,2014 年),该预测基于 E4cast 模型,该模型是澳大利亚能源部门的动态偏平衡模型。这些预测基于对人口增长(来源:澳大利亚统计局)、经济增长(来源:澳大利亚财政部)、能源价格(来源:国际能源署)、发电技术(来源:澳大利亚能源技术评估)、终端能源技术和政府政策的假设。图 13 显示了能源消耗、生产和出口总量的预测。该模型按燃料类型、行业和州或地区按年度预测能源消耗,考虑了政府政策,例如可再生能源目标 (RET) 和废除碳定价。RET 旨在鼓励可再生能源项目的发展。它在 E4cast 中被建模为对发电的限制。
摘要:我们对大气流动的分层湍流和小尺度湍流状态进行了尺度分析,重点关注中间层。我们区分了旋转分层宏观湍流 (SMT)、分层湍流 (ST) 和小尺度各向同性 Kolmogorov 湍流 (KT),并指定了这些状态的长度和时间尺度以及特征速度。结果表明,浮力尺度 (L b ) 和 Ozmidov 尺度 (L o ) 是描述从 SMT 到 KT 的转变的主要参数。我们采用浮力雷诺数和水平佛劳德数来表征中间层的 ST 和 KT。该理论应用于高分辨率大气环流模型的模拟结果,该模型采用 Smagorinsky 型湍流扩散方案进行亚网格尺度参数化。该模型使我们能够推导出 KT 范围内的湍流均方根 (rms) 速度。研究发现,湍流 RMS 速度在夏季有一个最大值,在冬季有两个最大值。冬季 MLT 中的第二个最大值与二次重力波破碎现象有关。该模型得出的湍流 rms 速度结果与基于 MF 雷达测量的完全相关分析结果吻合良好。提出了一种基于中尺度直接能量级联思想的中尺度水平速度新尺度。后者对中尺度和小尺度特征速度的发现支持了本研究提出的观点,即中尺度和小尺度动力学在统计平均值上受 SMT、ST 和 KT 控制。