摘要。在为农业设计飞机时,所有计算都是针对国际标准气氛(ISA)条件进行的,这使得可以比较在不同气候区进行的几架飞机的计算结果和飞行测试结果,通过将测试结果重新计算,将测试结果与国际标准气氛的参数与“将所有飞机”放置在同一条件下。从历史上看,在ISA领域开发国际标准的材料是在苏联开发的,并形成了国际标准ISO的基础,这又成为国际文职航空组织(ICAO)的文档ICAO 7488/3的基础,随后成为根据国际标准ISO的标准化的州文件。上述作品是在国际标准化ISO/TC 20/SC 6“标准气氛”的国际技术小组委员会框架内进行的,该曲目成立于1980年,是国际标准化机构ISO/TC 20/SC 6“标准气氛”的一部分。标准化是测量统一性的基础。在俄罗斯联合会中,标准化技术委员会TC 484“标准气氛”成立。开发的国际标准气氛模型使我们能够通过将测试结果重新计算为国际标准气氛的参数,将几个飞机在不同气候区域进行的计算和飞行测试结果进行比较,并将所有飞机放置在相同条件下 - ISA条件 - ISA条件。随着航空和太空技术的发展,受到标准化和标准化的大气参数列表正在扩大。
分子/气溶胶和原子的吸收 [5, 6]。雨、雪、雾、污染等因素会影响电磁辐射的传输,特别是光波在大气中的传输 [7]。除了上述吸收和散射效应外,折射率波动也会影响光波的传播。在高功率激光器中,吸收还会加热传播路径上的介质,导致光束发散,平均强度的峰值明显降低,这种效应称为“热晕” [8]。然而,激光功率限制和开发更强大激光器的高昂成本等挑战促使人们提出了“光束组合”技术。传统上,有两种光束组合方法:相干光束和非相干光束。在目标上产生高强度的相干光束组合需要线宽非常窄的激光器
在介电绝缘的超导磁体中需要聚合物[1],以及浸渍由NB 3 SN等脆性导体制成的磁铁线圈[2]。在未来的粒子加速器中,例如未来的圆形对撞机(FCC)项目[3,4],磁体将暴露于日益高的辐射剂量。为例,HL-LHC [5]内三重线圈中的预测峰剂量为30 mgy [6]。环氧树脂是具有良好的介电和机械支撑物的热固性聚合物,这些聚合物通常用于磁铁的大管浸没,用于电动机和发电机的线圈绕组,以及作为纤维增压组合的基质材料。这种环氧树脂的辐射损伤已被广泛研究[7]。以前,我们已经描述了不同环氧树脂系统在环境空气中辐射期间潜在用于超导磁体的老化[8]。由于超导磁体中的聚合物在没有氧气的情况下在低温温度下被照射,因此在本研究中,我们研究了辐射温度和大气的影响。为此,我们在三种不同的环境中辐射了相同的环氧树脂:在20℃,在环境空气或惰性气体中,并浸入4.2 K的液态氦气中。为了评估衰老过程并确定衰老率,我们采用动态机械分析(DMA)。DMA存储和损耗模量演变揭示了交联和链分裂对玻璃过渡温度(T G)的竞争影响以及大分子交联之间的分子量。辐照环境,尤其是辐射温度,可能会大大影响辐射引起的环氧树脂衰老。
上下文。热木星是潮汐锁定的气态系外行星,表现出巨大的白天温度对比。正如许多观察结果所暗示的那样,他们凉爽的夜晚被认为是托管云。然而,这些云的确切性质,它们的空间分布以及它们对大气动力学,热结构和光谱的影响仍然不清楚。目标。我们研究了WASP-43 B的大气,这是最近与James Webb空间望远镜(JWST)观察到的短期热木星,以了解云对大气循环和热结构的辐射和动态影响。我们旨在了解具有各种尺寸和大气金属性的不同种类的冷凝物的影响。方法。,我们使用了一个3D全球气候模型(GCM),该模型具有新的温度依赖性云模型,其中包括辐射反馈以及水动力整合,以研究WASP-43 b的大气特性。我们从GCM模拟中产生了可观察到的物品,并将它们与光谱相曲线进行了比较,从各种观察结果到对大气特性的限制。结果。我们表明云具有净变暖效果,这意味着由云引起的温室效应比反照率冷却效果强。我们表明,云的辐射效应对黄蜂的动力学和热结构有各种影响。取决于冷凝水的类型及其尺寸,辐射动力反馈将改变水平和垂直温度梯度并降低风速。对于超极性金属气氛,大气中形成的云层较少,导致反馈较弱。与HST,Spitzer和JWST观察到的光谱相曲线的比较表明,Wasp-43 B的夜间夜间浑浊,排除了Sub-Micron Mg 2 Sio 4云颗粒作为主要不透明源。区分多云的太阳能和多云的超极性金属气氛并不简单,需要进一步观察反射的光和热发射。
大气与海洋之间的相互作用在能量重新分配方面起着至关重要的作用,从而维持气候系统的能量平衡。在本文中,我们研究了大气和海洋热量输送变化之间的补偿。受先前主要使用数值气候模型的研究启发,使用再分析数据集研究了这种所谓的 Bjerknes 补偿。我们发现大气能量输送 (AMET) 和海洋能量输送 (OMET) 变化在再分析数据集中通常具有很好的一致性。通过多个再分析产品,我们发现从年际到十年的时间尺度,Bjerknes 补偿存在于北半球从 40°N 到 70°N 的几乎所有纬度。补偿率在不同时间尺度的不同纬度达到峰值,但它们总是位于亚热带和亚极地地区。与一些数值气候模型实验不同,这些实验将补偿归因于瞬态涡流输送对数十年时间尺度上的 OMET 变化的响应,我们发现平均流对 OMET 变化的响应导致了 Bjerknes 补偿,从而导致冬季中纬度地区 Ferrel 环流在数十年时间尺度上的移动。该环流本身由涡流动量通量驱动。海洋对 AMET 变化的响应主要是风驱动的。在夏季,几乎没有任何补偿,所提出的机制不适用。鉴于历史记录较短,我们无法确定是海洋驱动大气变化还是相反。
a b s t r a c t这项工作引入了一种方法,可以通过将机器学习的替代模型整合到OASIS全球循环模型(GCM)中来增强3D大气模拟的计算效率。传统的GCM基于反复整合物理方程的传统GCM在一系列时间段的大气过程中进行了大气过程,这是时间密集的,导致了模拟的空间和时间分辨率的妥协。这项研究赋予了这一限制,从而在实际时间范围内实现了更高的分辨率模拟。加速3D模拟在多个域中具有显着含义。首先,它促进了将3D模型集成到系外行星推理管道中,从而从以前从JWST和JWST Instruments预期的大量数据中对系外行星进行了良好的表征。其次,3D模型的加速度将使地球和太阳系行星的更高分辨率模拟,从而更详细地了解其大气物理和化学。我们的方法用基于仿真输入和输出的训练的基于神经网络的复发模型代替了绿洲中的辐射传输模块。辐射转移通常是GCM最慢的组件之一,因此为整体模型加速提供了最大的范围。替代模型在金星大气的特定测试案例上进行了训练和测试,以基准在非生物大气的情况下基于这种方法的实用性。这种方法产生了令人鼓舞的结果,与在一个图形处理单元(GPU)上相比,与使用匹配的原始GCM在金星样条件下相比,在一个图形处理单元(GPU)上表明,ABO V E 99.0%的精度和147个速度的因子。
Tianwen-1火星进入车辆于2021年5月15日在7:18(UTC+8)成功降落在南部乌托邦策划人的火星表面上。Tianwen-1火星探索任务包括三个主要部分:轨道,着陆和巡游。Tianwen-1航天器于2021年2月于2020年7月23日从Wenchang登上CZ-5B登上CZ-5B,并于2021年2月将其注入了火星轨道,并在轨道上停留了两个半月。在此期间,进行了着陆点上的sand storm观测和一般的光学监视任务。图。1。入口接口为125公里,速度为4.7 km/s。进入车辆在大约−10°时进行了修剪角度的攻击角度,在大部分飞行中进行了银行操作的升力,并在大约60公里的高度上升温。部署了一个装饰选项卡,以2.8马赫部署,以修剪攻击角度0。降落伞部署是在
1。简介国家航空和太空行政管理已宣布打算对火星行星进行新的任务。火星观察者是一项低成本的任务,重点是对火星地理学和气候学研究,并利用商业上可用的航天器。单个航天器将于1990年推出,并将在1991年进入火星周围的361 km高度轨道。本文中描述的压力调节器红外辐射计(PMIRR)已被选为火星观察员任务,并正在喷射推进实验室中开发。PMIRR是一个九通道的肢体,纳迪尔扫描大气声音符合签名,以解决该任务的气候科学目标。这些是在季节性周期内确定火星挥发性材料和灰尘的时间和空间分布,丰度,来源和水槽,并探索火星大气循环的结构和方面。PMIRR采用过滤器和气体相关辐射指定,主要用于绘制从表面至80 km的大气的3-D时间依赖的热结构,这是大气中的灰尘负荷 -
目前,GPS观察允许使用断层扫描衍生4-D大气(对流层或电离层)模型。为此,GPS数据用于估计对流层的倾斜对流层延迟(STD)(例如,Pottiaux,2010年)和电离层的倾斜总电子含量(STEC)(例如Bergeot等,2010)。层析成像方法包括通过体素(代表对流层或电离层)的体素离散数量(体素为3D像素,图1)。这允许在断层网格分辨率下获取有关这些参数的分布变化的信息(Mitchell和Spencer,2003年)。在不久的将来,使用Glonass和Future Galileo系统以及增加地面GNSS网络增加了STD和STEC的观察结果,这将减少对先验信息的依赖,最终导致大气中的层析成像主要基于数据(Bust and Mitchell,Mitchell,2008; Bender and Rababe,2007年)。