摘要:质子泵抑制剂(PPI)是成功抑制胃酸分泌的药物。它们用于管理各种酸相关疾病,包括胃食管反流疾病(GERD)和其他胃病。它可以通过与氢钾三磷酸酶(H+/K+ ATPase)酶降低盐酸输出,并抑制其在胃中的作用。PPI是最常见的药物之一;但是,这些处方中有25%至70%没有合法的迹象。因此,患者经常在没有益处的情况下服用这些治疗,使自己面临不必要的不良事件。PPI会引起急性间质性肾炎(AIN),这可能是与急性肾脏损伤有关的严重副作用(AKI)。据报道,PPI的长期使用与慢性肾脏疾病(CKD)的风险升高有关。因此,本综述旨在研究PPI长期使用对肾功能的不利影响。
剪接体是一种极其复杂的机器,在人类中由 5 种 snRNA 和 150 多种蛋白质组成。我们扩展了单倍体 CRISPR-Cas9 碱基编辑以靶向整个人类剪接体,并使用 U2 snRNP/SF3b 抑制剂 pladienolide B 研究了突变体。超敏替换定义了含有 U1/U2 的 A 复合物中的功能位点,但也定义了在 SF3b 解离后的第二化学步骤中起作用的成分中的功能位点。可行的抗性替换不仅映射到 pladienolide B 结合位点,还映射到 SUGP1 的 G-patch 结构域,该结构域在酵母中缺乏直系同源物。我们使用这些突变体和生化方法将剪接体解离酶 DHX15/hPrp43 鉴定为 SUGP1 的 ATPase 配体。这些数据和其他数据支持一种模型,即 SUGP1 通过在动力学阻滞下触发早期剪接体分解来促进剪接保真度。我们的方法为分析人类细胞中必不可少的机器提供了一个模板。
结果:MK-2206显着提高了抗癌化合物的效率,这些化合物是ABCG2的底物,而不是ABCB1转运蛋白。MK-2206(0.03 - 1μm)并未显着改变H460/MX20和S1-M1-80癌细胞的生存能力,该细胞过表达ABCG2转运蛋白。但是,在H460/MX20和S1-M1-M1-80癌细胞中,MK-2206(0.3和1μm)显着提高了Mitoxantrone,SN-38和Topotecan对Mitoxantrone,SN-38和拓扑转的抗癌效率,如与Cells IC50值相比,与Cells Incum iNCum Incum Incum Incum Incum in Incum in Incum in Incum相比,H460/MX20和S1-M1-M1-80癌细胞中的抗癌细胞中的抗癌效率。MK-2206显着增加了ABCG2 ATPase(EC50 =0.46μm)的基础活性,但并未显着改变其表达水平和膜上的亚位定位。分子建模结果表明,MK -2206通过氢键,疏水相互作用和π -π堆积结合ABCG2转运蛋白的活性袋。
抗生素耐药细菌的兴起是全球健康问题,由于这些抗性感染,到2050年,每年预计每年将超过100万人死亡。世界卫生组织(WHO)已经确定了十二种关键的抗生素病原体,包括抗性霉素肠球菌(VRE),例如肠球菌(E.粪便)。vre引起严重的医院可获得的感染,例如心内膜炎和败血症,并对多种抗生素产生了抗药性,强调了对新的抗菌治疗的迫切需求。应对这一危机,由日本千叶大学科学研究生院的Takeshi Murata教授领导的研究人员团队发现了一种有希望的新化合物V-161,有效地抑制了VRE的增长。他们的研究检查了在这些细菌中发现的一种称为Na +传输V-ATPase的钠泵化酶,该酶在E. hirae中发现,E. hirae是粪肠球大肠杆菌的亲戚,用作研究酶的更安全,更可拖动的模型。该团队由Chiba University科学研究生院的第一作者Kano Suzuki助理教授组成;奇巴大学医学真菌学研究中心的Yoshiyuki Goto副教授;高能加速器研究组织结构生物学研究中心的Toshiya Senda教授和Toshio Moriya副教授;国立自然科学研究所的分子科学研究所的Ryota Iino教授。Murata博士解释说:“这种酶有助于将钠离子从细胞中泵出,有助于VRE的生存,尤其是在像人类肠道这样的碱性环境中。这项研究于2024年11月21日在自然结构和分子生物学上发表,假设Na +传输V- ATPase在开发抗生素的发展中可以发挥关键作用,该抗生素专门针对VRE而不影响有益细菌。这种酶在像乳杆菌等有益细菌中不存在,尽管人类具有相似的酶,但它具有不同的功能。这使得VRE中的Na +传输V -ATPase成为选择性抗菌治疗的理想目标。”他进一步指出:“我们筛选了70,000多种化合物,以鉴定酶Na + -V -ATPase的潜在抑制剂。在其中,V-161是一个有力的候选人,在碱性条件下降低VRE生长方面表现出显着的有效性,这对于这种抗性病原体的生存至关重要。”此后,进一步的研究表明,V-161不仅抑制了酶功能,而且还降低了小鼠小肠中的VRE定植,突出了其治疗潜力。这项研究的主要发现是对酶的膜V 0结构域的高分辨率结构分析,揭示了对V-161如何与之结合并破坏酶功能的详细见解。v-161靶向酶的C形环与A-subunit之间的界面,有效地阻断了钠转运。这种结构信息对于理解化合物的起作用至关重要,并为开发针对该酶的药物提供了基础。Murata博士解释说:“从结构分析获得的发现可用于开发其他难治性细菌的治疗方法,也为制定未来药物开发的重要准则构成了基础。”他进一步补充说:“我们希望不仅为VRE进行创新治疗的发展,而且多种耐药细菌将大大推动对耐药性感染的治疗。”
结果:在心室编程刺激期间,DB/DB和HFHS喂养的小鼠显示出VT和T-WAVE替代品的增加。这些小鼠的心肌细胞表现出早期造影后的表现。 这两种模型均表明对副交感神经抑制的心率反应降低,表明自主神经功能障碍。 CGMP介导心脏副交感神经刺激,在DB/DB和HFHS喂养的小鼠的LV中降低。 相反,用可溶性鸟苷酸环化酶刺激(Riociguat)或磷酸二酯酶5抑制(sildenafil)降低VT诱导性的CGMP增强。 PKG1 lzm小鼠具有正常的自主响应性,但VT诱导性过高。 dB/db,HFHS和LZM小鼠分别表现出多活化的心肌糖原合酶三酶3βGSK3)。 此外,用TWS119抑制GSK3废除了这些小鼠的诱导VT。 舒张性胞质Ca 2+的重新摄取坡度在所有模型的心肌细胞中降低,而TWS119的GSK3抑制作用却反转了这种效果。 在HFHS-FED和LZM小鼠中抑制肌胞浆/内质网ca 2+ ATPase 2A-介导的Ca 2+再摄取的磷酸/磷酸磷脂(PLB)。心肌细胞表现出早期造影后的表现。这两种模型均表明对副交感神经抑制的心率反应降低,表明自主神经功能障碍。CGMP介导心脏副交感神经刺激,在DB/DB和HFHS喂养的小鼠的LV中降低。 相反,用可溶性鸟苷酸环化酶刺激(Riociguat)或磷酸二酯酶5抑制(sildenafil)降低VT诱导性的CGMP增强。 PKG1 lzm小鼠具有正常的自主响应性,但VT诱导性过高。 dB/db,HFHS和LZM小鼠分别表现出多活化的心肌糖原合酶三酶3βGSK3)。 此外,用TWS119抑制GSK3废除了这些小鼠的诱导VT。 舒张性胞质Ca 2+的重新摄取坡度在所有模型的心肌细胞中降低,而TWS119的GSK3抑制作用却反转了这种效果。 在HFHS-FED和LZM小鼠中抑制肌胞浆/内质网ca 2+ ATPase 2A-介导的Ca 2+再摄取的磷酸/磷酸磷脂(PLB)。CGMP介导心脏副交感神经刺激,在DB/DB和HFHS喂养的小鼠的LV中降低。相反,用可溶性鸟苷酸环化酶刺激(Riociguat)或磷酸二酯酶5抑制(sildenafil)降低VT诱导性的CGMP增强。PKG1 lzm小鼠具有正常的自主响应性,但VT诱导性过高。dB/db,HFHS和LZM小鼠分别表现出多活化的心肌糖原合酶三酶3βGSK3)。此外,用TWS119抑制GSK3废除了这些小鼠的诱导VT。舒张性胞质Ca 2+的重新摄取坡度在所有模型的心肌细胞中降低,而TWS119的GSK3抑制作用却反转了这种效果。在HFHS-FED和LZM小鼠中抑制肌胞浆/内质网ca 2+ ATPase 2A-介导的Ca 2+再摄取的磷酸/磷酸磷脂(PLB)。
摘要。收音机和手机使用振荡载体信号的频率调制(FM)来可靠地传输多路复用数据,同时拒绝噪声。在这里,我们使用遗传编码的蛋白振荡器(GEOS)作为电路中的载波信号来建立该范式的生化类似物,以实现单细胞数据的连续实时FM流。GEOS是由进化多样的思想家庭ATPase和激活因子模块构建的,这些模块在人类细胞中共表达时会产生快速的合成蛋白振荡。这些振荡用作单细胞载体信号,频率和振幅由GEO组件水平和活动控制。我们系统地表征了169个ATPase/Activator Geo对和具有多个竞争激活剂的工程师复合GEO,以开发一个用于波形编程的全面平台。使用这些原理,我们设计了对细胞活性调节地理频率的电路,并使用校准的机器学习模型解码其响应,以证明单个单元中转录和蛋白酶体降解动力学的敏感,实时FM流。GEOS建立一个动态控制的生化载体信号,解锁抗噪声的FM数据编码范式,为动态单细胞分析开辟了新的途径。简介。细胞动态调节不同时间尺度的基因表达,蛋白质定位和信号传导状态,以执行必不可少的生物学功能1-4。虽然基因组,转录组和蛋白质组学方法可以提供单细胞态5-8的快照,但实时遵循单个细胞的轨迹的能力对于理解动态细胞和生物体行为如何编码和功能1,9,10至关重要。这些单细胞动力学通常是使用荧光记者在显微镜下进行跟踪的,其强度或定位为您感兴趣的数据提供了代理10-16。虽然功能强大,但这些工具对扩展单细胞动力学和数据聚合的扩展跟踪构成了挑战,因为任意信号强度在仪器上各不相同,并且对光漂白和噪声17敏感。此外,传统基于荧光的工具生成的信号缺少元数据来识别信号的基本细胞来源,从而使密集的细胞环境中重叠信号的分离变得困难。
我们研究了短长核苷酸序列的硅硅表征,这些核苷酸序列在死亡应力诱导的转录组分析中差异表达。他们表现出与C末端旋转肽和防御素样蛋白的同源性,从而揭示了它们的抗菌活性。他们的预测纤维印刷显示出与抗菌肽有关的蛋白质特征。这些短长的RGA已显示具有结构性基序,例如APLT P型ATPase,酪蛋白激酶II(CK2),蛋白激酶3,蛋白激酶C(PKC)和N-糖基化位点,它们是抗病基因的属性。在配体对接分析中活跃结合位点精氨酸和赖氨酸残基的预测将它们作为抗菌肽预测,因为它们与抗菌活性的密切关系。硅结构 - 功能表征已经预测了它们在抗微生物病原体的抗性中的作用。此外,预测的抗菌肽区域显示了它们与Pr-5样蛋白和AMP家族Thaumatin
ovoquezna®(Vonoprazan)Voquezna®的活性成分Vonoprazan是一种钾富含钾的酸阻滞剂。它通过钾竞争方式抑制H+,K+ -ATPase酶系统,抑制胃顶细胞分泌表面的基础和刺激胃酸分泌。由于该酶被视为顶壁细胞内的酸(质子)泵,因此Vonoprazan被认为是一种胃质子 - 泵抑制剂(PPI),因为它阻止了酸产生的最后一步。vonoprazan不需要通过酸激活。它可以在静止状态和刺激状态下选择性地集中在顶叶细胞中。Vonoprazan以非共价和可逆的方式与活动泵结合。这是为了治愈所有侵蚀性食管炎的愈合以及与成人侵蚀性食管炎相关的胃灼热。维持所有侵蚀性食管炎的愈合以及成人侵蚀性食管炎的胃灼热。与阿莫西林和克拉霉素结合治疗成人幽门螺杆菌(H. Pylori)感染。in
DNA 聚合酶 theta (Polθ) 是一种参与 DNA 双链断裂 (DSB) 修复的酶。Polθ 包含一个 N 端 ATPase 驱动的 DNA 解旋酶结构域和一个 C 端 DNA 聚合酶结构域,它们协同作用,通过 theta 介导的末端连接 (TMEJ) 修复 DSB。在大多数情况下,Polθ 活性不是必需的,因为同源重组 (HR) 是修复 DNA 复制过程中出现的 DSB 的首选途径。然而,HR 介导的 DNA 修复所需的基因通常在肿瘤中发生突变或缺失,导致 DSB 修复和细胞存活严重依赖 Polθ 介导的 TMEJ。MOMA-313 是一种新型、有效且选择性的 Polθ 解旋酶活性抑制剂,旨在利用 HR 缺陷型肿瘤受损的 DNA 修复能力来获得潜在的治疗益处。
心肌 Ca 2+ 循环受损是导致心力衰竭 (HF) 的关键因素,会导致心脏收缩功能和结构重塑发生变化。在心肌细胞内,肌浆网 (SR) Ca 2+ 储存和释放的调节很大程度上依赖于 Ca 2+ 处理蛋白,例如 SR Ca 2+ ATPase (SERCA2a) 泵。在心动周期的舒张阶段(舒张期),SERCA2a 在将细胞浆 Ca 2+ 转运回 SR 中起着关键作用,这有助于将细胞浆 Ca 2+ 水平恢复到静息状态,并将 SR Ca 2+ 含量恢复到下一次收缩状态。然而,SERCA2a 表达和/或泵活性降低是 HF 的主要特征。因此,人们对开发针对 SERCA2a 的治疗方法的兴趣日益浓厚。本综述概述了 SERCA2a 泵的调节机制,并探讨了 SERCA2a 靶向治疗的潜在策略,这些策略正在临床前和临床研究中进行研究。