6 英寸光圈高流明圆柱体,流明输出为 3470 – 9250lm。 - 户外/游泳馆等级 采用特殊涂层、密封剂和接线,适合在恶劣环境下长期使用。 - 标准(请参阅 OStandard 版本规格表) - 可调白色(请参阅可调白色版本规格表) - 暖暗(请参阅暖暗版本规格表) - W+RGB(请参阅 W+RGB 版本规格表)
所有包含的参与者都将Atria映射留在了这两种技术上。研究发现,在窦性节奏和冠状窦起搏期间,用双极电压映射(使用Carto 3D映射)映射的低电压区域仅部分重叠在持续的房颤中。在持续性房颤期间,来自全局非接触式映射的局部复合核心部分与低压区域共定位。作者建议,使用双极电压映射可能不是识别持续性房颤患者消融区域的最合适方法。在消融过程后,在16个月的随访期间,心房心律不齐在60%的参与者中没有复发。
摘要:心房利钠肽主要由心房合成,排出后主要有两个作用:扩张血管和增加肾脏对钠和水的排泄。近几十年来,人们对心房利钠肽在心脏系统中的作用有了很大的了解。本综述重点介绍了几项研究,这些研究证明了分析心脏内分泌和机械功能之间调节的重要性,并强调了心房利钠肽作为心房的主要激素对心房颤动 (AF) 和相关疾病的影响。本综述首先讨论了有关心房利钠肽诊断和治疗应用的现有数据,然后解释了心房利钠肽对心力衰竭 (HF) 和心房颤动 (AF) 以及反之亦然的影响,其中跟踪心房利钠肽水平可以了解这些疾病的病理生理机制。其次,本综述重点介绍了心房利钠肽的常规治疗,例如心脏复律和导管消融,以及它们对心脏内分泌和机械功能的影响。最后,本文提出了关于心脏复律后心脏机械和内分泌功能恢复延迟的观点,这可能导致急性心力衰竭的发生,以及通过大面积消融或手术恢复窦性心律对失去 ANP 产生部位的潜在影响。总体而言,ANP 通过影响血管舒张和排钠作用在心力衰竭中起关键作用,导致肾素-血管紧张素-醛固酮系统活性降低,但了解 ANP 在 HF 和 AF 中的密切作用对于改善其诊断和个性化患者治疗至关重要。
。cc-by-nc-nd 4.0国际许可证是根据作者/资助者提供的,他已授予Medrxiv的许可证,以永久显示预印本。(未通过同行评审认证)
抽象背景:计算机断层扫描(CT)图像上左心房(LA)和心外膜脂肪组织(EAT)体积的术前估计与心房颤动(AF)复发的风险增加有关。我们旨在设计一个基于学习的工作流程,以提供对心房,心包和饮食的可靠自动分割,并为未来在AF管理中的应用提供。方法:本研究招募了157例AF患者,他们在2015年1月至2017年12月在台北退伍军人综合医院之间接受了首次导管的消融。LA,右心庭(RA)和心包的三维(3D)U-NET模型用于开发用于总,LA-EAT和RA-EAT自动分割的管道。 我们将心包内的脂肪定义为组织,衰减在-190至-30 HU之间,并量化了总食物。 在心包内的LA或RA的扩张性内部边界和心内膜壁之间的区域用于检测归因于脂肪的体素,从而估计La-EAT和RA-EAT。 结果:LA,RA和心包分割模型的骰子系数分别为0.960±0.010、0.945±0.013和0.967±0.006。 3D分割模型与LA,RA和心包的地面真相良好相关(r = 0.99,所有人的P <0.001)。 我们提出的食品,LA-EAT和RA-EAT方法的骰子系数分别为0.870±0.027、0.846±0.057和0.841±0.071。 结论:我们提出的用于自动LA,RA和饮食分割的工作流程在CT图像上使用3D U-NETS对AF患者可靠。用于开发用于总,LA-EAT和RA-EAT自动分割的管道。我们将心包内的脂肪定义为组织,衰减在-190至-30 HU之间,并量化了总食物。在心包内的LA或RA的扩张性内部边界和心内膜壁之间的区域用于检测归因于脂肪的体素,从而估计La-EAT和RA-EAT。结果:LA,RA和心包分割模型的骰子系数分别为0.960±0.010、0.945±0.013和0.967±0.006。3D分割模型与LA,RA和心包的地面真相良好相关(r = 0.99,所有人的P <0.001)。我们提出的食品,LA-EAT和RA-EAT方法的骰子系数分别为0.870±0.027、0.846±0.057和0.841±0.071。结论:我们提出的用于自动LA,RA和饮食分割的工作流程在CT图像上使用3D U-NETS对AF患者可靠。
为了应对上述新情况,ATRIA 提出的工具旨在为地面段技术带来颠覆性进步,原因如下。首先,AI 算法将取代有效载荷工程师在有效载荷配置方面迄今为止不可或缺的作用。其次,AI 算法和数据集将提供有用的信息,不仅可以自主优化卫星资源分配,还可以探索这些复杂有效载荷的新功能并充分利用它们。最后但并非最不重要的是,该工具旨在通用,因此对有效载荷透明,为所提出的系统提供附加值,并将其转变为卫星制造商的经济高效的解决方案。这种提议的通用灵活有效载荷管理成本较低,将增加其标准化的吸引力。ATRIA 计划实现其他成果,例如灵活的有效载荷模拟器。ATRIA 工具将在 EUTELSAT KONNECT 和 KONNECT VHTS 卫星上进行验证。
图1。识别KCNQ1基因座中预测的调节元件。a)UCSC基因组浏览器视图描述了第一个内含子使用情况不同的KCNQ1的两个同工型,而KCNQ1OT1则是该位点中长的非编码RNA。同工型下方的轨道表示来自GWA的QT间隔相关的SNP,其位置在所有轨道中都延伸到灰色条上。出现的轨道描绘了基于心脏特异性数据集的预测调节元件,最低的三个轨道描绘了组蛋白公开可用的芯片seq实验的测序读取,标志着来自两个人类左心室的H3K27AC,并留下ATRIA ATRIA ATAC-SEQ-SEQ-seq实验。b)小鼠中KCNQ1基因座的UCSC基因组浏览器视图,其先前表征的远景增强子在KCNQ1的内含子1中。较低的两个曲目描绘了从胚胎第15天公开可用的小鼠心脏和前脑的ATAC-SEQ数据集的测序读数。
国家卫生研究院将心动过缓定义为训练有素的运动员以外的成年人的心率<60 bpm。1室内障碍物(AVB)。2个三级房室(AV)块或完整的心脏块(CHB)是由心脏传导系统中的缺陷导致的异常心律,在心脏传导系统中,通过人口室内淋巴结(AVN)进行静止传导,导致Atria和Atria和cortricles完全分离。3心室逃生机制可以发生从AVN到束支线Purkinje系统。CHB的ECG发现为1。常规PP间隔,2。常规R – R间隔,3。P波和QRS复合物之间缺乏明显的关系,而4。与QRS复合物相比,存在更多的P波。2完全心脏阻滞(CHB)的发病率估计为1.5 000至20 000的活出生,可能是先天性或获得的。3,每当孕妇遇到时,CHB都会对产科医生提出挑战,并要求