详细手术技术................................................................................................................3 假体部件的移除................................................................................................................3 股骨尺寸测量和试件放置................................................................................................3 股骨部件的放置........................................................................................................4 胫骨和 ATS 部件的放置................................................................................................5 胫骨部件(无 ATS)的放置.............................................................................................6 膝关节的最终复位....................................................................................................................7 术后护理.............................................................................................................................7 取出.............................................................................................................................7 处置.............................................................................................................................7
使用宽度 TWY 指示宽度 在没有 ATS 机构的情况下,夜间和能见度低于 800 米时禁止通行。夜间和能见度低时,翼展小于或等于 24 米的飞机受到限制。 15 米 B1 夜间及能见度低于 800 米且未配备 ATS 时禁止通行。仅限于翼展不超过 24 米的飞机,在夜间和能见度低的情况下使用。在没有 ATS 组织的情况下,夜间和能见度低于 800 米时禁止飞行。夜间和能见度低时,翼展小于或等于 24 米的飞机受到限制。 15 米 B2 夜间及能见度低于 800 米且未配备 ATS 时禁止通行。仅限于翼展不超过 24 米的飞机,在夜间和能见度低的情况下使用。 15 米 B3 夜间及能见度小于 800 米时禁飞。仅可用于进入草地带。 7.5 米 B4 夜间及能见度低于800米时禁飞。仅可用于到达草地。在没有 ATS 组织的情况下,夜间和能见度低于 800 米时禁止飞行。夜间和能见度低时,翼展小于或等于 24 米的飞机受到限制。 23 米 P1 夜间及能见度低于 800 米且未配备 ATS 时禁止通行。仅限于翼展不超过 24 米的飞机,在夜间和能见度低的情况下使用。在没有 ATS 组织的情况下,夜间和能见度低于 800 米时禁止飞行。夜间和能见度低时,翼展小于或等于 24 米的飞机受到限制。 23 米 P2 P3 夜间及能见度低于 800 米且未配备 ATS 时禁止通行。仅限于翼展不超过 24 米的飞机,在夜间和能见度低的情况下使用。 23 米 P4 P5 P6 夜间及能见度小于 800 米时禁飞。 7.5 米 P7 P8 夜间及能见度低于 800 米时禁行。夜间及能见度低于800米时禁止通行。 20 米 T5 T6 夜间及能见度低于 800 米时禁飞。在没有 ATS 组织的情况下,夜间和能见度低于 800 米时禁止飞行。
空中交通服务 (ATS) 对飞行安全发挥着重要作用。远程空中交通服务 (RATS) 代表了一种新颖的、更加数字化的 ATS 解决方案。在某些方面,可以说 RATS 优于传统 ATS。然而,由于它涉及各种社会技术障碍,使 RATS 成为 ATS 的主导解决方案具有挑战性。对这些社会技术障碍的认识不足可能会阻碍 RATS 的竞争力,尤其是 RATS 提供商的竞争力。本研究旨在从社会技术的角度确定 RATS 在立志成为 ATS 的主导解决方案时面临的主要障碍。为了确定这些障碍,我们进行了一项溯因案例研究。实证数据主要通过对 10 个直接或间接参与 RATS 的关键利益相关者进行半结构化访谈收集。本研究主要收集来自瑞典和英国的实证数据。大型技术系统 (LTS) 和多层次视角 (MLP) 的理论概念用于理解和分析实证数据。已确定的 RATS 面临的障碍被映射到 MLP 的不同层次。已确定 MLP 各个层次的障碍。最突出的障碍似乎在于变革过程的社会方面、命题-认知差距和连接基础设施依赖性。关键词远程空中交通服务、远程塔台、空中交通服务、空中交通管制、多层次视角、大型技术系统、社会技术障碍
空中交通服务 (ATS) 对飞行安全发挥着重要作用。远程空中交通服务 (RATS) 代表了一种新颖的、更加数字化的 ATS 解决方案。在某些方面,可以说 RATS 优于传统 ATS。然而,由于它涉及各种社会技术障碍,使 RATS 成为 ATS 的主导解决方案具有挑战性。对这些社会技术障碍的认识不足可能会阻碍 RATS 的竞争力,尤其是 RATS 提供商的竞争力。本研究旨在从社会技术的角度确定 RATS 在立志成为 ATS 的主导解决方案时面临的主要障碍。为了确定这些障碍,我们进行了一项溯因案例研究。实证数据主要通过对 10 个直接或间接参与 RATS 的关键利益相关者进行半结构化访谈收集。本研究主要收集来自瑞典和英国的实证数据。大型技术系统 (LTS) 和多层次视角 (MLP) 的理论概念用于理解和分析实证数据。已确定的 RATS 面临的障碍被映射到 MLP 的不同层次。已确定 MLP 各个层次的障碍。最突出的障碍似乎在于变革过程的社会方面、命题-认知差距和连接基础设施依赖性。关键词远程空中交通服务、远程塔台、空中交通服务、空中交通管制、多层次视角、大型技术系统、社会技术障碍
空中交通服务 (ATS) 对飞行安全发挥着重要作用。远程空中交通服务 (RATS) 代表了一种新颖的、更加数字化的 ATS 解决方案。在某些方面,可以说 RATS 的表现优于传统 ATS。然而,由于它涉及各种社会技术障碍,使 RATS 成为 ATS 的主导解决方案具有挑战性。对这些社会技术障碍的认识不足可能会阻碍 RATS 的竞争力,尤其是 RATS 提供商的竞争力。本研究旨在从社会技术角度确定 RATS 在渴望成为 ATS 的主导解决方案时面临的主要障碍。为了确定这些障碍,进行了一项溯因案例研究。实证数据主要通过对直接或间接参与 RATS 的 10 位关键利益相关者进行半结构化访谈收集。本研究主要收集来自瑞典和英国的实证数据。采用大型技术系统 (LTS) 和多层次视角 (MLP) 的理论概念来理解和分析实证数据。已确定的 RATS 面临的障碍被映射到 MLP 的不同级别。已确定 MLP 各个级别的障碍。最突出的障碍似乎在于变革过程的社会方面、命题-感知差距以及连接基础设施依赖性。关键词 远程空中交通服务、远程塔台、空中交通服务、空中交通管制、多层次视角、大型技术系统、社会技术障碍
空中交通服务 (ATS) 对飞行安全发挥着重要作用。远程空中交通服务 (RATS) 代表了一种新颖的、更加数字化的 ATS 解决方案。在某些方面,可以说 RATS 优于传统 ATS。然而,由于它涉及各种社会技术障碍,使 RATS 成为 ATS 的主导解决方案具有挑战性。对这些社会技术障碍的认识不足可能会阻碍 RATS 的竞争力,尤其是 RATS 提供商的竞争力。本研究旨在从社会技术的角度确定 RATS 在立志成为 ATS 的主导解决方案时面临的主要障碍。为了确定这些障碍,我们进行了一项溯因案例研究。实证数据主要通过对 10 个直接或间接参与 RATS 的关键利益相关者进行半结构化访谈收集。本研究主要收集来自瑞典和英国的实证数据。大型技术系统 (LTS) 和多层次视角 (MLP) 的理论概念用于理解和分析实证数据。已确定的 RATS 面临的障碍被映射到 MLP 的不同层次。已确定 MLP 各个层次的障碍。最突出的障碍似乎在于变革过程的社会方面、命题-认知差距和连接基础设施依赖性。关键词远程空中交通服务、远程塔台、空中交通服务、空中交通管制、多层次视角、大型技术系统、社会技术障碍
空中交通服务 (ATS) 对飞行安全发挥着重要作用。远程空中交通服务 (RATS) 代表了一种新颖的、更加数字化的 ATS 解决方案。在某些方面,可以说 RATS 优于传统 ATS。然而,由于它涉及各种社会技术障碍,使 RATS 成为 ATS 的主导解决方案具有挑战性。对这些社会技术障碍的认识不足可能会阻碍 RATS 的竞争力,尤其是 RATS 提供商的竞争力。本研究旨在从社会技术的角度确定 RATS 在立志成为 ATS 的主导解决方案时面临的主要障碍。为了确定这些障碍,我们进行了一项溯因案例研究。实证数据主要通过对 10 个直接或间接参与 RATS 的关键利益相关者进行半结构化访谈收集。本研究主要收集来自瑞典和英国的实证数据。大型技术系统 (LTS) 和多层次视角 (MLP) 的理论概念用于理解和分析实证数据。已确定的 RATS 面临的障碍被映射到 MLP 的不同层次。已确定 MLP 各个层次的障碍。最突出的障碍似乎在于变革过程的社会方面、命题-认知差距和连接基础设施依赖性。关键词远程空中交通服务、远程塔台、空中交通服务、空中交通管制、多层次视角、大型技术系统、社会技术障碍
在过去的一个世纪里,战争变得越来越复杂。陆军组织从大型师级组织转变为当今以旅为基础的联合兵种团队。为了应对这一挑战,ATS 组织经历了转型,以更好地使航空兵满足不断变化的战线的要求。ATS 组织现在旨在有效地支持陆军航空兵和联合、跨机构、跨部门和多国 (JIIM) 部队。ATS 组织能够安全有效地使用积极和程序控制措施,并指定机场管理结构来管理战区级别的高密度和拥挤的机场。这种设计的组织原则是教义平衡、后勤可支持、现代化、多功能和模块化。
Bruno Lamiscarre 于 1980 年获得光子学工程理学硕士学位;他先在 Onera 公司工作,工作地点包括法国的 Chatillon、Meudon 和 Toulouse。他在物理学科工作了 16 年,在光学传感器和信号处理领域积累了丰富的经验。自 1997 年以来,他一直参与机场相关研究,并担任“未来机场”项目的负责人。他参与了欧盟在航空运输系统 (ATS) 领域的项目,涉及无人机、机场、自动化、快速模拟、安全。自 2007 年以来,他一直担任 IESTA 平台开发的项目经理:IESTA 是 ATS 的快速模拟,特别关注环境问题和未来的 ATS 概念。
CNS SG/11-WP/18 - 2 - 1.2 远程机场 ATS 是通过实时传输来自远程控制机场的固定和移动高清数字摄像机组合和集成的视图来实现的。远程数据流用于复制机场及其附近的视图,这相当于机场塔台视觉控制室的视图。固定摄像机覆盖机场的机动区域,并用作显示器的主要输入源。这些摄像机可能由其他视觉监视系统(如闭路电视)补充,用于看不见的区域。可移动摄像机具有平移倾斜变焦 (PTZ) 功能,可以根据需要将其定向以放大机场上的固定和移动物体。这种用法复制了传统塔台中空中交通管制员使用双筒望远镜的方式。可临时配置可移动摄像机以弥补固定摄像机的故障。因此,一系列环境传感器和麦克风可以捕捉声音、气象或其他运行数据,从而大大增强和补充空中交通管制员的视觉态势感知能力。 1.3 远程机场 ATS 的概念正在不断发展,目前欧洲航空安全局 (EASA) 定义了两种主要运行模式: • 单一运行模式是指由一个远程 ATS 工作,一次为一个机场提供 ATS 服务