简单的摘要:昆虫的先天免疫系统可以识别出侵入昆虫并产生快速免疫反应的各种病原体。然而,过度的免疫激活对昆虫的存活有害。OCT/POU家族的NUB基因在调节肠道IMD途径中起着重要作用。在这项研究中,采用了重要的园艺害虫,bactrocera boctrocera boctolocera boctrocera tosalis在复杂的栖息地中研究了其高适应能力。通过NCBI数据库分析,我们发现背链球菌的BDNUB基因产生了两种转录同工型BDNUBX1和BDNUBX2。在带有系统感染的革兰氏阴性细菌大肠杆菌后,IMD信号通路的免疫原子基因,抗微生物肽diptcin(dpt),cecropin(Cec),attcina(attcina),attcina(atta),attcinb(attb)和attcinc(attb)和attcinc(attcinc)(attcinc(ATTB)(attcinc)(attcinc(ATTC))在用革兰氏阴性细菌rettgeri肠道感染后6小时和9小时,在6小时和9小时内,抗菌肽基因DPT,CEC,ATTB和ATTC的表达水平显着上调。rNAi表明,BDNUBX1和BDNUBX2基因的沉默可以使肠道对肠道的感染更加敏感,显着降低生存率,并导致肠道微生物群结构的变化。这些结果表明,维持免疫平衡在反背主的高侵入性中起着重要作用。
Gateway克隆技术基于保守和定向的重组系统,该系统允许在不同的克隆向量之间传递DNA片段,从而保持阅读网格,而无需核苷酸或损失。使用这种技术,不再需要使用限制性核酸内切酶(消除使用限制酶固有的任何限制)和DNA连接酶[1]。与传统的克隆方法相比,这项技术更快,更高效且便宜。此技术使您可以获得极高的克隆效率(大于90%)[2]。该技术是蛋白质合成和功能分析的极好克隆方法[3]。通过两种反应,BP和LR反应,使用了Gateway克隆机制(在ATTP和ATTB,ATTL和ATTR之间)利用gateway的克隆机制。为了发生BP反应,我们首先在包括ATTB序列的引物对[1.3](供体载体包括ATTP位置[1])的帮助下放大了感兴趣的基因。包括ATTB位置的PCR产品与包括ATTP位置的供体矢量相结合,从而形成了输入克隆[1]。ATTB和ATTP位置之间的这种整合反应在于该反应的起源,这引起了含有attl两侧的感兴趣基因的入口克隆(由ATTB和ATTP的重组组成)[1]。LR反应是进入克隆ATTL位置与目标向量的ATTT位置之间的重组反应,导致表达克隆[3]。从BP反应获得的输入克隆包括ATTL位置,目标向量构建以包括ATTR [1]位置。LR反应旨在将感兴趣的基因转移到目标载体,因此输入克隆与适当的目标矢量和LR克隆酶混合。这些地方之间的重组产生了两个分子[2],其中一个包含感兴趣的DNA段,另一个分子是一个副产品,其中包含CCDB基因,该基因与大肠杆菌DNA干扰了它的生长,以阻止其生长[3]。 CCDB。该基因对该技术非常重要,因为它可以防止大肠杆菌生长,从而允许进行负面选择。也就是说,在这两种反应中重组后,我们将拥有一种产品(将具有CCDB基因所在的感兴趣的基因)和副产品(将具有感兴趣基因所在的CCDB基因),因此,当选择的菌落将在其中包含一个具有利益的载体的菌落时,可以更轻松地(将其更容易)(可以选择一个是表达和表达的基因)使网关克隆技术成为高性能克隆技术的因素)。要获得包含CCDB基因的载体和传播向量,我们必须求助于e.coli db3.1 striber,该基因在Girase DNA中具有突变(gyra462),使其对该基因的致命作用具有抗性[3]。将感兴趣的基因或DNA片段克隆在输入克隆中后,我们可以将其转移到各种目的地向量,从表达蛋白到大肠杆菌细胞,酵母,昆虫,哺乳动物之间[4]。该方法的一些主要应用是这样的事实,即它允许输入向量向他人的亚克隆,基于攻城特异性重组,允许每个亚键反应以维持适当的阅读网格,速度和易于次数。
• LSR-finder 是一种由 Editas 开发的生物信息学流程搜索算法,可以高精度地发现功能性 LSR。• 使用 LSR-finder 从公共宏基因组数据库中识别出数千个候选 LSR 及其 attB/attP 序列。• 根据聚类算法选择了 159 个代表性 LSR,以代表大多数 LSR,用于在人类细胞中进行高通量功能筛选。• 数百种新型 LSR 在人类细胞中表现出强大的重组和基因组整合活性和特异性。• 这些重组酶蛋白可能有助于开发新型基因编辑技术,该技术能够在体内敲入大型转基因,从而有可能针对其他治疗适应症。
结果:在此概念证明中,我们将基因组剃须 - seq应用于小鼠胚胎干细胞和人类癌细胞,每实验产生并绘制数百至数千个SV。我们发现,通过CRE介导的对称LOXP位点产生SVS的细胞是迅速决定的,这可能是由于CRE和/或SVS本身的毒性所致。相比之下,在非对称attb/p位点,通过BXB1介导的重组产生SV的细胞是稳定的。这种稳定性使我们能够研究作用于不同类别BXB1诱导的SV的选择压力,并开始表征其功能后果。首先,我们发现带有较大缺失但没有反转的细胞是从增殖的细胞种群中预先损失的,这部分归因于不容忍中心粒损失。第二,我们观察到,尽管平衡的易位在体外耐受,不平衡的易位,尤其是那些敏感的易位,但迅速耗尽了。最后,通过在基因组洗牌细胞的瓶颈种群中共同合并转录组和盒式盒式条形码配对,我们证明我们可以确保特异性,诱导的SVS对基因表达的后果。
摘要:目前,靶向烟碱乙酰胆碱受体(NACHR)的杀虫剂已被广泛使用。对杀虫剂的杀伤力作用的研究发现,它们可以影响昆虫的病毒量。杀虫剂影响昆虫病毒负荷的机制尚不清楚。在这里,我们表明靶向杀虫剂的NACHR可以通过免疫缺陷(IMD)途径影响病毒复制。我们证明,低剂量的尖型(6.8 ng/ml),充当果蝇的拮抗剂,是果蝇的拮抗剂烟碱乙酰胆碱受体α6(Dα6),显着升高了成年成年成年型成年型成人乳糖质滴虫的drosophilophila sigmavirus(dmelophila melanogaster)。相反,高剂量的Spinosad(50 ng/ml)充当Dα6的激动剂,大大降低了病毒载量。在Dα6 -Knockout Flies中不存在这种病毒水平的双向调节,这表示Spinosad作用通过Dα6的特异性。此外,Dα6的敲低导致IMD途径中基因表达降低,包括Dredd,IMD,Resish和下游抗菌肽基因ATTA和ATTB,表明先天性免疫反应降低。随后的研究表明,温和蝇与Dα6-柔软的双突变体之间的病毒滴度没有显着差异,这表明IMD途径在抗病毒防御中的作用取决于Dα6。总的来说,我们的发现阐明了NACHR信号传导与IMD途径之间的复杂相互作用,从而介导抗病毒免疫,突出了nachR靶向化合物的潜力,以无意中影响昆虫宿主中的病毒动力学。这些知识可能会为综合的害虫管理策略的发展提供信息,这些策略考虑了杀虫剂使用的更广泛的生态影响。