近量子限制的约瑟夫森参量放大器 (JPA) 是超导量子电路中必不可少的组件。然而,众所周知,约瑟夫森余弦势的高阶非线性会导致增益压缩,从而限制可扩展性。为了降低四阶或克尔非线性,我们实现了一个具有 Al-InAs 超导体-半导体混合约瑟夫森结 (JJ) 的参量放大器。我们从两个不同的设备中提取了 Al-InAs JJ 的克尔非线性,并表明它与具有相同约瑟夫森电感的 Al-AlO X 结相比低了三个数量级。然后,我们演示了一种由 Al-InAs 结制成的四波混频 (4WM) 参量放大器,该放大器实现了超过 20 dB 的增益和 -119 dBm 的压缩功率,其性能优于基于 Al 结的单谐振 JPA。
1 维也纳大学物理学院,维也纳量子科学与技术中心 (VCQ),Boltzmanngasse 5,维也纳 A-1090,奥地利 2 巴斯克地区大学 UPV/EHU 物理化学系,Apartado 644,48080 毕尔巴鄂,西班牙 3 巴斯克地区大学 UPV/EHU EHU 量子中心,Barrio Sarriena,s/n,48940 Leioa,西班牙 4 维也纳大学物理学院和量子与时空方面研究网络 (TURIS),Boltzmanngasse 5,1090 维也纳,奥地利 5 维也纳大学物理学院,维也纳物理博士学院 (VDSP),Boltzmanngasse 5,维也纳 A-1090,奥地利 6 光子学与纳米技术研究所,国家研究委员会 (IFN-CNR),L. Da Vinci 广场32, 20133 米兰, 意大利 7 Dipartimento di fisica, 米兰理工大学, L.达芬奇广场 32, 20133 米兰, 意大利 8 Departamento de F´ısica, 马德里卡洛斯三世大学, Avda. dela Universidad 30, 28911 Leganes, Spain 9 马德里材料科学研究所 (CSIC), Cantoblanco, E-28049 马德里, 西班牙 10 维也纳大学物理学院和研究网络量子与时空方面 (TURIS), Boltzmanngasse 5, 1090 Vienna, Austria
量子态断层扫描 (QST) 仍然是量子计算机和量子模拟器的基准测试和验证的黄金标准。由于通用量子多体状态中的参数数量呈指数级增长,实验量子设备的当前规模已经使直接量子态断层扫描变得难以实现。然而,大多数物理量子态都是结构化的,通常可以用少得多的参数来表示,这使得高效的 QST 成为可能。一个突出的例子是矩阵乘积状态 (MPS) 或矩阵乘积密度算子 (MPDO),矩阵维度较小,据信它代表了一维 (1D) 量子设备生成的大多数物理状态。我们研究是否可以仅使用量子比特数多项式的状态副本数来恢复一般的 MPS/MPDO 状态,并且误差有界,这对于高效的 QST 是必要的。为了使这个问题在实践中变得有趣,我们假设只对目标状态上的量子比特进行局部测量。通过使用只需要单一测量设置的局部对称信息完备正算子值测量(SIC-POVM),我们对各种常见的多体量子态,包括典型的短程纠缠态、随机 MPS/MPDO 态和一维哈密顿量的热态,给出了上述问题的肯定答案。此外,我们还对某些长程纠缠态(如一族广义 GHZ 态)给出了肯定的否定答案,但已知具有实值波函数的目标态除外。我们的答案得到了 Cramer-Rao 界限的有效计算与使用机器学习辅助最大似然估计(MLE)算法的数值优化结果之间近乎完美的一致性的支持。该一致性还导致了使用局部 SIC-POVM 的最佳 QST 协议,该协议可以在当前的量子硬件上实际实现,并且对大多数一维物理状态都非常高效。我们的结果还表明,即使长距离纠缠量子态能够被有效表示,通常也无法有效恢复。
以现有技术构建的量子计算机难以小型化,也不太可能成为笔记本电脑或手机等个人电子产品 [1–4]。因此,基于云的服务被认为是向公众提供量子计算机访问权限的最适用方法。人们自然会问,当无法完全控制量子硬件时,是否可以保持量子算法的隐私。盲量子计算 (BQC) 旨在解决这个问题。量子算法可以在第三方量子代理上使用 BQC 协议执行,同时保持算法、数据和结果的机密性 [5, 6]。这里我们讨论了两种实现通用量子计算的方法。一种是基于门的量子计算 (GBQC) [7]。该方法从纯量子态开始,通常将所有量子位重置为零。然后,它使用一系列量子门转换量子态。最终的输出状态携带处理后的信息。另一种方法称为基于测量的量子计算 (MBQC) 或单向量子计算 [8–11]。该方法准备一个高度纠缠的多个量子比特状态,通常称为簇状态 [12],然后执行一系列测量和校正来实现计算。最终它可以给出与 GBQC 相同的结果。[6] 基于 MBQC 框架提出了通用盲量子计算 (UBQC) 协议。UBQC 协议利用通用簇状态,可以由具有单个代理的半经典客户端或具有多个代理的完全经典客户端实现。还有其他提案可以使用单个代理和完全经典客户端实现 BQC,但是,这些提案需要一些计算假设 [13–15]。在本文中,我们利用量子图形推理方法 ZX-Calculus 来推导可以用多个代理和完全经典客户端实现的 BQC 协议。UBQC 协议利用通用簇状态,强制将描述算法的所有信息编码在测量轴中。它牺牲了将信息编码到量子比特之间的纠缠结构中的能力。相反,我们的方法确实将信息编码在纠缠结构中,并且不需要通用簇状态。这使得我们的协议更加节省资源。本文安排如下:第二节 B 描述了 ZX 演算,这是一种图形量子推理技术,我们用它来推导结果。第三节解释了我们的 BQC 协议。第四节证明了我们协议的正确性和安全性。第六节讨论了与现有验证协议的兼容性,并量化了我们的协议和 UBQC 协议的资源成本。第七节总结了本文。
数值模拟在现代燃烧系统的设计中发挥了至关重要的作用。在过去的二十年里,研究的重点是开发大涡模拟 (LES) 方法,该方法利用计算能力的大幅提升来显著提高预测精度。即使预计超级计算能力会有所提高,LES 在设计中的使用仍受到其高计算成本的限制。此外,为了帮助决策,必须增强此类 LES 计算以估计模拟组件中潜在的不确定性。与此同时,制造或使用燃烧设备的行业也在发生其他变化。虽然效率和减排仍然是主要的设计目标,但通过优化维护和维修来降低运营成本正成为企业的一个重要部分。后者的探索得益于燃烧室的数字化,它允许通过一系列设备从大量传感器收集和存储运行数据。此外,包括燃烧系统上的低功耗硬件在内的多个计算级别也正在变得可用。如果有适当的数值工具可用,如此大的数据集将为设计和维护创造独特的机会。由于 LES 通过利用超级计算彻底改变了计算引导设计,因此需要新一代数值方法来利用如此大量的数据和计算硬件的多样性。在本文中,我们回顾了这种异构数据驱动环境的新兴计算方法。有案例表明,在这个领域存在基于物理的燃烧建模的新但非常规的机会。
产品和编辑投稿 Sign Update 欢迎在新闻和评论页面中刊登与新产品和改进产品相关的新闻和信息。但是,Sign Update 不承担提供报道或退回未经请求的产品的义务。Sign Update 总是很高兴收到有关文章的通信提示和技巧,这些提示和技巧应首先以大纲形式发送,并附上作者的姓名和地址。除非附有贴有邮票的地址信封,否则手稿、照片和其他材料将不予退还。对任何未经请求的材料不承担任何责任。Sign Update 尽一切努力确保杂志内容的准确性,并在接受广告发布时采取一切合理谨慎的态度,但不对其准确性或质量作出任何陈述。Sign Update 或其代理对任何广告或编辑报道引起的任何投稿人或第三方的索赔或投诉不承担任何责任。Sign Update 不对杂志或任何广告中任何索赔的准确性或有效性提供任何保证,包括与任何商品或服务的规格或原创性有关的任何索赔。只有在广告商赔偿出版商或其代理因第三方侵犯或指称侵犯其权利或任何诽谤或贬损言论或索赔而提出的任何索赔的情况下,广告才被接受。
产品和编辑投稿 Sign Update 欢迎在新闻和评论页面中刊登与新产品和改进产品相关的新闻和信息。但是,Sign Update 不承担提供报道或退回未经请求的产品的义务。Sign Update 总是很高兴收到有关文章的通信提示和技巧,这些提示和技巧应首先以大纲形式发送,并附上作者的姓名和地址。除非附有贴有邮票的地址信封,否则手稿、照片和其他材料将不予退还。对任何未经请求的材料不承担任何责任。Sign Update 尽一切努力确保杂志内容的准确性,并在接受广告发布时采取一切合理谨慎的态度,但不对其准确性或质量作出任何陈述。Sign Update 或其代理对任何广告或编辑报道引起的任何投稿人或第三方的索赔或投诉不承担任何责任。Sign Update 不对杂志或任何广告中任何索赔的准确性或有效性提供任何保证,包括与任何商品或服务的规格或原创性有关的任何索赔。只有在广告商赔偿出版商或其代理因第三方侵犯或指称侵犯其权利或任何诽谤或贬损言论或索赔而提出的任何索赔的情况下,广告才被接受。
2015 年阿里斯航空展以商业领域为主,从市场和资金角度来看,商业领域显然比国防航空航天市场更重要。但民用市场的规模并不是最重要的考虑因素。随着航空航天界 2015 年在巴黎相聚,国家生存正成为一个更加紧迫的问题,因此军事市场仍然至关重要。商业市场也不是航空业最具创新性的部分;军事技术在创新中仍然发挥着核心作用。这在许多领域都可以看到,例如材料、推进、航空电子设备、电子和安全。军事领域的创新显然也会影响商业方面。随着 F-35 成为美国及其盟国空中力量的关键要素,未来十年将发生根本性转变。F-35 是变革的核心,原因很简单——它是一个革命性的平台,从其对舰队的影响来看,更是如此。F-35 Lightning II 拥有革命性的传感器融合座舱,使其在空对空、空对地和电子战中都十分有效。盟军和美国战斗机飞行员将不断发展并分享新的战术和训练,随着时间的推移,这将推动领导者必须做出的改变,以便在未来的战斗中有效指挥和控制。还有欧洲运输机 A400M:尽管最近发生了悲惨的坠机事故,但这架飞机正在重新定义欧洲空军如何在其整体作战方法中发挥空运的作用……换句话说,A400M 将为法国提供战略能力,从而可以直接从法国进行干预,而无需在战区预先部署部队。就战斗机市场而言,对传统战斗机进行现代化改造,使其与 F-35 配合使用,将产生大量业务。除了目前的主流产品外,全球战斗机市场也相当庞大。……“鹰狮模型”值得一提。首先,该飞机的设计从一开始就考虑到了可支持性。其次,鹰狮是在后冷战时期的环境中形成的,当时强调了与北约的互操作性以及在多国联盟和条件下工作的能力。瑞典强调鹰狮是一种完全可互操作的飞机。第三,鹰狮从一开始就被设计成一种非常灵活的飞机。第四,该飞机的设计也适用于各种包装。泰国购买了鹰狮战机,然后又购买了萨博 340AEW 和地面控制套件。鹰狮战机案例凸显了载人战斗机的市场比阵风战机、欧洲战斗机或 F-35 战机要广阔得多,而且大自然厌恶真空。中国和俄罗斯也在加强其全球自信和活动。他们希望扩大客户关系,以维持和支持他们的全球议程以及他们的航空航天工业。中国和俄罗斯很有可能制造和展示在航展上令人印象深刻的飞机(勒布尔热的 JF-17 雷霆就是一个例子)
最近的研究表明,使用两阶段监督框架可以生成描绘人类对脑电图 (EEG) 视觉刺激的感知的图像,即 EEG-视觉重建。然而,它们无法“重现”准确的视觉刺激,因为决定合成图像的是人类对图像的注释,而不是图像的数据。此外,合成图像通常会受到嘈杂的 EEG 编码和生成模型不稳定的训练的影响,从而难以识别。相反,我们提出了一个单阶段 EEG-视觉检索范式,其中两种模态的数据是相关的,而不是它们的注释,这使我们能够恢复 EEG 片段的准确视觉刺激。具体而言,我们通过优化对比自监督目标来最大化 EEG 编码和相关视觉刺激之间的相互信息,从而带来两个额外的好处。一是,它使EEG编码能够在训练期间处理超出可见类别的视觉类别,因为学习并不针对类别注释。此外,模型不再需要生成视觉刺激的每个细节,而是专注于跨模态对齐并在实例级别检索图像,确保可区分的模型输出。对最大的单一受试者EEG数据集进行了实证研究,该数据集测量由图像刺激引起的大脑活动。我们证明了所提出的方法完成了实例级EEG-视觉检索任务,即报告现有方法无法报告的精确视觉刺激。我们还研究了一系列EEG和视觉编码器结构的含义。此外,对于主要研究的语义级EEG-视觉分类任务,尽管没有使用类别注释,但所提出的方法优于最先进的监督EEG-视觉重建方法,特别是在开放类别识别能力方面。
这次演讲原本是为了 1981 年在 Endicott House 举办的物理与计算会议 40 周年而准备的,所以我认为应该从 1981 年开始。当时我是加州理工学院的一名大四学生,费曼准备在 Endicott House 会议 [13] 上发表主题演讲的时候我肯定在场,那是人们第一次认真思考量子计算。我在加州理工学院的时候并没有听说过这个,事实上,直到很晚我才看到费曼的论文。但我想提一下我在加州理工学院听到的他的另一场演讲,那场演讲表明他当时正在思考物理学基础问题。费曼的演讲是关于负概率的。在演讲开始时,他解释说他一直在研究贝尔定理,该定理表明量子物理不可能是局部现实的隐变量理论。这意味着,任何对量子力学的解释要么需要非局域性,要么需要非现实性(这里的局域性意味着信息不能比光传播得更快,而现实性意味着你可以测量的东西对应于粒子的具体属性)。费曼解释说,他所做的就是仔细研究证明贝尔定理的假设,看看是否存在任何隐藏的假设。事实上,他找到了一个——假设所有概率都在 0 到 1 之间。他推断,如果概率可以小于 0 或大于 1,那么也许有办法解决 EPR 悖论,但当你计算任何你可以实际观察到的概率时,计算会将这些不切实际的概率相加,得到一个介于 0 和 1 之间的结果。这并不像乍一听那么离谱——谐振子的维格纳函数就是这样表现的,费曼对此进行了评论。他继续展示了他关于负概率的一些发现;我不太记得这部分内容了。早在 1964 年的一系列讲座中 [12],费曼就说过