摘要:癌症仍然是一个复杂的医学挑战,也是全球主要的死亡原因之一。纳米药物已被提议作为应对这些复杂疾病的创新平台,其中几种治疗策略的结合可能会提高治疗成功率。在这些纳米药物中,纳米粒子介导的核酸递送已被提出作为调节基因表达的关键工具,无论是靶向基因沉默、干扰 RNA 机制还是基因编辑。这些新型递送系统强烈依赖于纳米粒子,特别是金纳米粒子 (AuNPs) 为有效的递送系统铺平了道路,因为可以微调它们的尺寸、形状和表面特性,再加上易于用不同的生物分子进行功能化。在此,我们将讨论调节致癌基因和肿瘤抑制基因表达的不同分子工具,并讨论 AuNP 功能化在体外和体内模型中用于核酸递送的最新进展。此外,我们将重点介绍这些基于球形 AuNP 的结合物在基因传递方面的临床应用、当前的挑战以及纳米医学的未来前景。
根据研究,肝细胞癌(HCC)在死亡原因方面在全球排名第三,并且是总体上第五大常见的癌症类型。 因此,寻找新颖的诊断和治疗方法至关重要。 使用纳米技术作为一种癌症治疗,最近引起了很大的兴趣。 尽管在检测和治疗方面取得了重大进展,但在完全消除这种疾病之前还有很长的路要走。 因此,寻找诊断和治愈疾病的创新方法至关重要。 尤其是,具有与许多生物分子相当的大小相当的金属纳米颗粒(NP)及其纳米级结构的实质惰性引起了极大的兴趣。 由于其特殊的光学质量,通过各种配体的附着,生物相容性(生物启动性和低细胞毒性)以及出色的光学特性,金NP(AUNP)获得了重大兴趣。 当前的评论讨论了各种领域中AuNP的效率,包括成像,免疫疗法和用于治疗肝癌的光热疗法。 最后,本综述总结了AUNPS前景的局限性。根据研究,肝细胞癌(HCC)在死亡原因方面在全球排名第三,并且是总体上第五大常见的癌症类型。因此,寻找新颖的诊断和治疗方法至关重要。使用纳米技术作为一种癌症治疗,最近引起了很大的兴趣。尽管在检测和治疗方面取得了重大进展,但在完全消除这种疾病之前还有很长的路要走。因此,寻找诊断和治愈疾病的创新方法至关重要。尤其是,具有与许多生物分子相当的大小相当的金属纳米颗粒(NP)及其纳米级结构的实质惰性引起了极大的兴趣。由于其特殊的光学质量,通过各种配体的附着,生物相容性(生物启动性和低细胞毒性)以及出色的光学特性,金NP(AUNP)获得了重大兴趣。当前的评论讨论了各种领域中AuNP的效率,包括成像,免疫疗法和用于治疗肝癌的光热疗法。最后,本综述总结了AUNPS前景的局限性。
我们先前的工作中描述了带有DNA折纸(DNAO)间隔者(DNAO)间隔者(DNAO)隔离剂(DNAO)隔离剂(DNAO)隔离剂(NPOM)构建体(见下文)。[23]简而言之,通过将样品浸入DNAO溶液中,用1-mm MGCL 2,0.5×TBE Buffer浸入DNAO溶液中,用折叠的DNAO模板官能化。aunps用5 0硫醇修饰的20×多-T链功能化,以杂交至少30分钟,而先前折纸先前组装到AU基板上。一旦完全组装,底物用毫克水冲洗并用氮气吹干。AuNP的表面覆盖密度保持足够低,以允许单个AUNP特征。重要的是要注意,溶液中没有凝聚。将所得的干样品放置在配备同时SER的显微镜下,并在单个NP水平上进行深色场表征。sers收集在反向散射的几何形状中,并从0.9-Na,100倍空气放空物镜镜头进行启动。
将化疗药物如阿霉素 (DOX) 封装在脂质纳米颗粒 (LNP) 中可以克服其急性全身毒性。然而,通过实施安全的刺激响应策略,在肿瘤微环境中精确释放药物以提高最大耐受剂量并减少副作用尚未得到很好的证实。本研究提出了一种集成纳米级穿孔来触发混合等离子体多层 LNP 中的 DOX 释放,该 LNP 由聚集在内部层界面的 5 nm 金 (Au) NP 组成。为了促进位点特异性 DOX 释放,开发了一种单脉冲辐射策略,利用纳秒脉冲激光辐射 (527 nm) 与混合纳米载体的等离子体模式之间的共振相互作用。与传统的 DOX 负载 LNP 相比,这种方法将靶细胞中的 DOX 量增加了 11 倍,导致癌细胞显著死亡。脉冲激光与混合纳米载体相互作用的模拟表明,释放机制由 AuNP 簇附近薄水层的爆炸性蒸发或过热脂质层的热机械分解介导。该模拟表明,由于温度分布高度集中在 AuNP 簇周围,因此在辐射后 DOX 的完整性完好无损,并突显出受控的光触发药物输送系统。
lspr是它们独特的光学特性之一,可以考虑扩大周围分析物分子的拉曼信号。通过仔细控制其大小,形状和间距间距,可以使Aunps展示LSPR,从而使其成为提高SERS信号的理想候选者。au已被许多研究人员广泛用于SERS主动底物。24 - 31然而,由于乏味的途径和使用刺激性化学物质,合成Aunps的合成一直在具有挑战性。32 - 38在这里,通过使用Dime-thyylformamide(DMF)的简单明了的方法,使用金氯化水合物(Haucl 4 $ 3H 2 O)合成金纳米颗粒(AUNP)。39 - 41使用DMF作为溶剂和还原剂,以前已经表明,金,银和其他金属的金属纳米结构可以以各种方式形成。42 - 44这里,引入了一个简单的途径,以直接在PAN/DMF解决方案中合成AUNP。这种方法具有无表面活性剂合成的好处。同时,聚合物纳米复合材料不仅增强了整体表面特性,还可以支持可重复使用的lm。45
lspr是它们独特的光学特性之一,可以考虑扩大周围分析物分子的拉曼信号。通过仔细控制其大小,形状和间距间距,可以使Aunps展示LSPR,从而使其成为提高SERS信号的理想候选者。au已被许多研究人员广泛用于SERS主动底物。24 - 31然而,由于乏味的途径和使用刺激性化学物质,合成Aunps的合成一直在具有挑战性。32 - 38在这里,通过使用Dime-thyylformamide(DMF)的简单明了的方法,使用金氯化水合物(Haucl 4 $ 3H 2 O)合成金纳米颗粒(AUNP)。39 - 41使用DMF作为溶剂和还原剂,以前已经表明,金,银和其他金属的金属纳米结构可以以各种方式形成。42 - 44这里,引入了一个简单的途径,以直接在PAN/DMF解决方案中合成AUNP。这种方法具有无表面活性剂合成的好处。同时,聚合物纳米复合材料不仅增强了整体表面特性,还可以支持可重复使用的lm。45
黄金化合物不仅可以很好地探索对肿瘤的细胞毒性作用,而且还与癌症免疫系统相互作用。免疫系统部署了先天和适应性机制,以防止病原体并防止恶性转化。通过体内和体外实验,黄金化合物与活化免疫系统的综合作用在癌症治疗中表现出了令人鼓舞的结果。金化合物已知会诱导先天免疫反应;但是,这些反应可能有助于自适应免疫反应。黄金化合物扮演着一种在先天免疫中协同作用的主要触觉的角色。黄金化合物通过诱导CRT,ATP,HMGB1,HSP和NKG2D的释放来增强免疫原性,从而支持癌细胞抗原性并促进抗肿瘤免疫反应。金化合物会影响各种免疫细胞(包括抑制剂调节T细胞),抑制髓样衍生的抑制细胞,并增强树突状细胞的功能和数量。金纳米颗粒(AUNP)具有改善免疫疗法的作用并降低治疗过程的毒性和副作用。因此,AUNP为探索抗癌金化合物和免疫治疗干预措施的组合提供了理想的机会。
nm 211 At-AuNPs@H16 和 5 nm 211 At-AuNPs@H16/RGD 的设计如图 1 所示。通过 TEM、DLS 和 UV-Vis 对合成的表面改性 AuNPs 进行评估,结果如图 S1 和表 S1 所示。发现所有类型的 AuNP 都近似为球形并且相当单分散。不同的表面改性影响了它们的 zeta 电位。mPEG 修饰的 AuNPs 在水溶液中分散性良好。两种肽修饰的 AuNPs 在改性过程中在作为溶剂的水中聚集,而在 PB 中分散且稳定
图 1 载有 5-氟尿嘧啶 (5-FU) 的金纳米粒子 (AuNPs) 与 CD133 抗体结合,在靶向药物递送系统中靶向结直肠癌干细胞 (CRCSCs) 的拟议机制示意图。载有 5-FU 并与 CD133 抗体结合的甲氧基聚乙二醇 (mPEG) 稳定的 AuNPs 将靶向 CRCSCs,而不是大部分结直肠癌,因为 CRCSCs 表面 CD133 抗原过度表达。CD133 抗体配体与靶细胞的高亲和力结合将提高递送效率,从而保护健康细胞。载有 5-FU 的 AuNPs 将通过内吞作用被细胞内化。肿瘤内的酸性环境可能会触发 5-FU 从细胞内体内的 AuNP 复合物中裂解,通过干扰 DNA 合成来增强细胞毒性。