• 数字显示:输入和输出电压、输入和输出电流、频率 • 手动旁路开关将负载转移至公用电网。• 低压和高压保护 • 射频干扰过滤
MicrochipAvr®Xmega®是一个基于AVR增强的RISC架构的低功率,高性能和外围8/16位微控制器的家族。通过在单个时钟周期内执行指令,AVR XMEGA设备的CPU吞吐量接近每秒100万个指令(MIPS),从而使系统设计人员可以优化功耗与处理速度。
Automatic Voltage regulators Automatic Voltage Regulators - 20KVA 1 phase, Input: 150/250V 1.Technical Specifications: Servo controlled voltage stabilizer -Rating: 20 kVA, 1 phase -Input Voltage Range: 150 – 280 V ac -Output Voltage: 230V +/- 1% -Correction of speed: 8V to 70V per sec.- 纠正方法:无步数变量变压器/滚筒触点类型 - 冷却:天然空气冷却 - 效率:97% - 99%型和适用性:不平衡供应和不平衡负载,适合所有功率因子负载。- 无负荷损失:小于0.4%的载荷能力:最高150%。- 锻炼周期:连续24x7-响应时间:小于10ms 2。可选功能和保护措施: - 超载和短路保护 - 低/高压切断 - 单相预防/反向相预防 - 稳定器旁路系统-Earth故障保护-Spike and Spiber Protection -Spike/digial/Anolog/digial/Anolog/Anolog/Anolog/digial/Anolog Meters以显示电压和电流 - 在自动和手动模式
便携式,重量不到 15 磅(取决于配置)AVR(Atrborne 录像机)系列是高可靠性 COTS MIL-STD-901D 或 MIL-STD-810 加固型 DVR,设计用于承受不同的恶劣环境条件,在这些条件下数据安全性和可靠性至关重要。在工业环境或恶劣的空中环境中,极端温度变化范围从 -40°C 到 +85°C,或各种冲击和振动影响可能会影响数据的安全性。军事、电信或重工业环境中的关键任务应用。
精确操作是指机器人在综合环境中表现出高度准确,细致和灵活的任务的能力[17],[18]。该领域的研究重点是高精度控制和对动态条件的适应性。使用运动学模型和动态模型以实现结构化设置中的精确定位和组装[19],依靠刚性机械设计和模型驱动的控制依赖于刚性机械设计和模型驱动的控制。最近,深度学习和强化学习改善了动态环境中的机器人适应性[20],[21],而视觉和触觉感应的进步使千分尺级的精度在握把,操纵和组装方面[22]。此外,多机器人协作还允许更复杂和协调的精确任务。尽管取得了重大进展,但在多尺度操作整合,动态干扰补偿和低延迟相互作用中仍然存在挑战[23]。未来的研究应进一步改善交叉模态信息的实时对齐,并增强非结构化环境中机器人视觉的鲁棒性,以优化精确的操纵能力。
AVR® ATmegaS128 微控制器 (MCU) 将业界领先的 AVR 内核带入航空航天业。ATmegaS128 MCU 专为增强空间应用的辐射性能和可靠性而设计。它利用了多年来在全球大众市场设计和使用的成熟 Atmel AVR 工具。ATmegaS128 微控制器面向许多最常见的空间应用,这些应用通常需要占用空间小、功耗低以及对电机和传感器进行模拟控制。
连接到公用设施 将设备插入 3 线接地插座。如果交流输入为端子类型,请按照端子标记连接电源线。 连接设备 将设备插入 AVR 后面板插座。然后按下前面板电源开关至“RESET”位置以打开设备。注意:插入 AVR 的所有设备的总功耗不得超过其容量(请参阅规格)。否则可能会导致断路器故障(熔断)。
植物病原体代表着对农作物生产的持续威胁,并且对全球粮食安全造成了重大障碍。在感染过程中,这些病原体时空将大量效应子部署到破坏宿主防御机制和/或操纵细胞途径,从而促进定植和感染。然而,除了它们在发病机理中的关键作用外,某些效应子(称为气相(AVR)效应子)可以直接或通过植物耐药性(R)蛋白直接或间接感知,从而导致种族特异性抗性。对复杂的AVR-R相互作用的深入了解对作物的遗传改善和保护它们免受疾病的影响至关重要。agnaporthe oryzae(m。oryzae)是水稻爆炸疾病的病因,是一种异常毒性和毁灭性的真菌病原体,可引起50多种单子叶植物物种的爆炸疾病,包括经济上重要的农作物。rice-M。Oryzae病态系统是AVR效应子功能解剖及其与R蛋白和水稻中其他靶蛋白相互作用的主要模型,这是由于其科学的优势和经济意义。在阐明AVR效应子在大米和Oryzae之间相互作用中的潜在作用方面取得了显着进步。本综述全面讨论了Oryzae AVR效应子的最新进步,并通过与感染过程中水稻中相应的R/靶标蛋白的相互作用进行了特定的重点。此外,我们通过利用M. Oryzae AVR效应子获得的结构见解来审议工程R蛋白的新兴策略。
结果:与 HVs 相比,AS 患者(AS-T2D 和 AS-noT2D 合并)在 AVR 前表现出 PCr/ATP(平均值 [95% CI];HVs,2.15 [1.89, 2.34];AS,1.66 [1.56, 1.75];P <0.0001)和血管舒张剂应激 MBF(HVs,2.11 mL min g [1.89, 2.34];AS,1.54 mL min g [1.41, 1.66];P <0.0001)受损。 AVR 之前,在 AS 组中,与 AS-noT2D 患者相比,AS-T2D 患者的 PCr/ATP(AS-noT2D,1.74 [1.62, 1.86];AS-T2D,1.44 [1.32, 1.56];P =0.002)和血管舒张剂应激 MBF(AS-noT2D,1.67 mL min g [1.5, 1.84];AS-T2D,1.25 mL min g [1.22, 1.38];P =0.001)较差。在 AVR 之前,AS-T2D 患者的 PCr/ATP(AS-T2D,1.44 [1.30, 1.60];T2D 对照组,1.66 [1.56, 1.75];P =0.04)和血管扩张剂应激 MBF(AS-T2D,1.25 mL min g [1.10, 1.41];T2D 对照组,1.54 mL min g [1.41, 1.66];P =0.001)也比基线时的 T2D 对照组差。AVR 后,AS-noT2D 患者的 PCr/ATP 恢复正常,而 AS-T2D 患者没有改善(AS-noT2D,2.11 [1.79, 2.43];AS-T2D,1.30 [1.07, 1.53];P =0.0006)。接受 AVR 治疗后,两组 AS 的血管扩张剂应激 MBF 均有所改善,但 AS-T2D 患者的 MBF 仍然较低(AS-noT2D,1.80 mL min g [1.59, 2.0];AS-T2D,1.48 mL min g [1.29, 1.66];P =0.03)。PCr/ATP 不再有差异(AS-T2D,1.44
摘要 目的 除矢状线对齐外,还强调了横平面参数 (TPP) 和旋转半脱位对患者报告结果的影响。退行性脊柱侧弯成因的假设之一是椎间盘退化,伴有轴向椎体 (AVR) 和椎间旋转 (AIR) 增加。因此,脊柱侧弯早期的 TPP 分析似乎特别令人感兴趣。本研究旨在评估成人脊柱畸形 (ASD) 患者三维 (3D) 重建的可靠性。方法 30 名 ASD 患者接受双平面 X 线检查,并分为两组(Cobb 角 [ 30 � 或 \ 30 � )。测量脊柱参数和 TPP(顶端 AVR、主曲线上部和下部的 AIR)。四位操作员进行了两次 3D 重建。使用 ISO 标准 5725-2 分析观察者内和观察者之间的可靠性,以量化可重复性的全局标准偏差 ( S R )。结果平均 Cobb 角为 31 �,平均年龄 55 岁(70% 为女性)。顶端 AVR、上部和下部 AIR 的平均值分别为 16 � ± 15 �、6 � ± 6 � 和 5 � ± 5 �。脊柱骨盆参数 S R 低于 4.5 �。对于 Cobb 角 \ 30 � ,AVR 顶点、扭转指数、上部和下部的 S R 分别为 7.8 �、9.6 �、4.5 � 和 4.9 �