由高级技术(例如机器学习(ML),物联网(IoT)和云计算)授权的开创性解决方案。自主水监护人代表水废物管理的范式转移,为监测和清洁水体提供了全面有效的方法。AWG功能的核心是无数传感器,包括用于精确称重的废物的HX711和5KG负载电池,用于湿度监测的DHT11传感器以及用于实时水质评估的pH传感器。这些传感器同时起作用,以提供有关水条件的准确和及时数据,从而积极干预以防止污染和保护水资源。AWG操作的核心是它与云平台的集成,利用Blynk IoT平台进行无缝的数据传输和管理。通过Blynk移动应用程序,用户可以访问有关AWG的水质,废物水平和操作状态的实时信息。此外,AWG的智能通知系统在废物箱达到满负荷时提醒用户,从而触发自动收集过程。AWG的关键创新是其废物收集机制,该机制是由旨在有效检索和存储废物的电梯状结构促进的。配备了摄像头进行对象检测,AWG利用Yolo V7算法来识别和分类废料,以确保有针对性且有效的清洁操作。我们重点介绍其创新功能,包括传感器集成,云连接,废物检测和自动导航。此外,通过NEO6M模块集成的GPS技术可实现AWG的精确导航,确保了由Raspberry Pi 4 Model B 4GB提供的指定水体的最佳覆盖范围,AWG在预先定义的路线后自动运行,并有效地收集了高达5kg的浪费。通过细致的编程和硬件集成,AWG体现了尖端技术的融合,以应对本文的紧迫环境挑战,我们介绍了AWG的设计,实现和性能评估的全面概述。此外,我们讨论
智商系统控制器中的AC组合器和发电机凸轮的额定值为2 awg至14 AWG Cu/Al电线。绝缘多任务连接器将L1和L2电线从发电机扩展线连接到IQ系统控制器凸耳。至少携带两个多标准连接器,一个用于L1,另一个用于L2。合适的多任务连接器的一个示例是北极星袋绝缘的多tap连接器,带有3个凸耳,可支撑最小导体尺寸为14 AWG,最大导体尺寸为1/0 AWG。使用多任务凸耳的一个端口连接发电机。如果需要为智商网关供电,请使用第二个端口为智商组合仪供电。这主要是当智商网关由IQ Combiner Bus Bar提供动力时。图1显示了使用3点lug多-TAP时L1和L2电线的排列。
摘要:提出了一种由级联微环谐振器和AWG组成的高分辨率集成光谱仪,实现了0.42nm的高分辨率和90nm的带宽,在生化传感应用方面有很高的潜力。OCIS代码:(300.6190) 光谱仪;(130.3120) 集成光学器件;(130.6010) 传感器。引言当前光谱仪领域最重要的研究之一是基于平面集成光波导技术的光谱仪,其结构多种多样,例如阵列波导光栅(AWG)[1]、中阶梯光栅[2]、微环谐振器(MRR)[3]和波导傅里叶变换(FT)光谱仪[4-5]。其中,对AWG和EDG等分光式传统光谱仪的研究已经持续了很长时间。在我们之前的工作中,我们提出并演示了一种基于级联 AWG 和可调微环谐振器阵列的高分辨率、宽带宽集成光谱仪 [4]。然而,每个通道的微环都需要调谐,这非常耗时。在本文中,我们提出了一种将热调谐 MRR 与 AWG 级联的结构来制作高分辨率光谱仪,从而减少了微环阵列调谐所花费的时间。
QAS:现在可以绕过串扰抑制矩阵来减少延迟 QAS:现在可以使用“信号输出”选项卡中的控件将振荡器直接输出到信号输出 1(正弦)和 2(余弦)上的信号输出上。相对节点已更改 QAS:现在可以在仪器的 Trigger Out 连接器上输出已辨别的量子位状态 QAS:可以在 LabOne UI 中编辑串扰抑制矩阵 QAS:现在可以通过 LabOne UI 中混频器的增益和相位不平衡指定去偏移参数 AWG:添加了 getQAResult 和 waitQAResultTrigger 指令以读取最后一个量子位状态辨别的结果 AWG:提高了编译速度和稳定性 AWG:波形查看器现在支持长达 10 MSa 的波形 AWG:序列器程序内存已限制为缓存内存 LabOne:macOS 支持 LabOne:图可以保存为 PNG 或 JPEG 格式 LabOne:为图、输入字段和设备连接对话框添加上下文菜单 LabOne API:使用 vectorWrite 进行波形更新,被更快、更强大的 setVector 方法取代。波形现在按照序列程序中定义的顺序排序,而不是按字母顺序排序。 LabOne API:波形更新现在使用整数格式。建议使用辅助函数 convert_awg_waveform 和 parse_awg_waveform 转换为新格式。 规格:添加了信号输出相位噪声的性能图
电缆配置(表 1):PVC 护套,额定温度为 105°C,整体铝箔屏蔽;3 对 26 AWG 双绞线(输出信号),加上 2 对 24 AWG 双绞线(输入功率) 电缆配置(表 2):PVC 护套,额定温度为 105°C,整体铝箔屏蔽;24 AWG 导线,最小标准电缆长度为 10 英尺,但可以 5 英尺为增量订购任意长度。例如,对于 20 英尺电缆,将 -XXXX 替换为 -0020“MS” 类型配套连接器和预制电缆的额定值为 NEMA 12“M12” 电缆组件的额定值为 IP67 * 对于防水应用,请使用 NEMA 4 10 针电缆和连接器 109209-XXXX
GORE ® Aerospace FireWire ® 电缆是铜基 1394b FireWire 数据链路的首选解决方案(图 6)。这些电缆为 S400 数据速率下长达 75 英尺的互连解决方案提供高保真信号链路(表 3)。与传统结构(如双绞线电缆)相比,Gore 的独特设计可显著节省尺寸和重量(图 7)。这种四芯设计比常见的双绞线结构小约 40%,每架飞机可节省多达 11.5 磅(图 8)。GORE ® Aerospace FireWire ® 电缆有三种标准尺寸,从 22 AWG 到 26 AWG。
量子计算正在迅速发展,需要复杂的控制机制来精确操纵量子比特 - 量子位。量子位是量子计算中量子信息的基本单位,精确控制其状态对于实现量子门和执行量子算法至关重要。任意波形发生器 (AWG) 用于产生用户定义的、精确的和定制的 RF 波形来操纵量子位的状态。量子算法是使用量子门序列实现的。AWG 支持创建可定制的脉冲序列,从而实现量子位校准、量子实验和量子电路的实现。为了让用户能够使用量子计算机并实现量子应用程序的开发,需要一个量子软件堆栈。本文介绍了 Qiskit 量子堆栈与 AWG 的集成。
摘要:量子级联激光器 (QCL) 因其灵活的设计和紧凑的体积而成为一种无处不在的中红外光源。制造具有高功率水平和良好光束质量的多波长 QCL 芯片对于许多应用而言都是非常可取的。在本研究中,我们通过在单个芯片上集成五个 QCL 增益部分阵列和阵列波导光栅 (AWG),展示了 λ ∼ 4.9 µ m 单片波长光束组合 (WBC) 红外激光源。来自切割面的光反馈使激光能够产生,而集成的 AWG 将每个增益部分的发射光谱锁定到其相应的输入通道波长,并将它们的信号在空间上组合到单输出波导中。我们的芯片具有来自公共孔径的高峰值功率,每个输入通道超过 0.6 W,在脉冲模式下运行时,边模抑制比 (SMSR) 超过 27 dB。我们的主动/被动集成方法可实现从 QCL 脊到 AWG 的无缝过渡,无需再生长或衰减耦合方案,从而实现稳健的设计。这些结果为开发适用于高光谱成像等应用的高度紧凑中红外源铺平了道路。
GORE ® Aerospace FireWire ® 电缆是铜基 1394b FireWire 数据链路的首选解决方案(图 6)。这些电缆为 S400 数据速率下长达 75 英尺的互连解决方案提供高保真信号链路(表 3)。与传统结构(如双绞线电缆)相比,Gore 的独特设计可显著节省尺寸和重量(图 7)。这种四芯设计比常见的双绞线结构小约 40%,每架飞机可节省多达 11.5 磅(图 8)。GORE ® Aerospace FireWire ® 电缆有三种标准尺寸,从 22 AWG 到 26 AWG。
配件(提供的用户)SMART1524ET-将电池连接到UPS推荐的电池电缆测量值为6 AWG,最大建议长度为6.56 ft。 / 2 m。 SMART1548ET-将电池连接到UPS推荐的电池电缆仪为8 AWG,最大建议长度为6.56 ft。 / 2 m。 SMART1524ET-需要24V 150A额定的保险丝银行。建议安装18英寸的DC保险丝。/ 0.45 m,电池系统的正连接线向UPS。SMART1548ET-需要48V 70A额定保险丝银行。建议安装18英寸的DC保险丝。/ 0.45 m,电池系统的正连接线向UPS。