Ce´ line Delpech, 1 , 6 Julia Schaeffer, 1 , 6 Noemie Vilallongue, 1 , 6 Apolline Delaunay, 1 Amin Benadjal, 2 Beatrice Blot, 1 Blandine Excoffier, 1 Elise Plissonnier, 1 Eduardo Gascon, 3 Floriane Albert, 1 Antoine Paccard, 1 Ana Saintpierre, 1 Celestin Gasnier, 1 Yvrick Zagar, 2 Vale´ rie Castellani, 4 Stephane Belin, 1 Alain Che´ dotal, 2 , 4 , 5 和 Homaira Nawabi 1 , 7 ,* 1 格勒诺布尔阿尔卑斯大学,INSERM U1216,格勒诺布尔神经科学研究所,38000 格勒诺布尔,法国 2 索邦大学,INSERM,法国巴黎国家科学研究院,视觉研究所 3 法国马赛艾克斯大学,法国国家科学研究院,INT,蒂莫内神经科学研究所 4 法国里昂第一大学,MeLiS,法国国家科学研究院 UMR5284,INSERM U1314 5 法国里昂临终关怀院东部医院集团病理学研究所 6 这些作者贡献相同 7 主要联系人 *通信地址:homaira.nawabi@inserm.fr https://doi.org/10.1016/j.devcel.2024.09.005
受伤的周围神经通常表现出不满意和不完整的功能结果,并且没有改善再生的临床批准疗法。术后电刺激(ES)增加了轴突再生长,但实际挑战,从延长手术室时间到与经皮丝的位置相关的风险和陷阱,可以阻止广泛的临床采用。本研究以高级生物吸收材料的形式提出了一种可能的解决方案,用于一种薄,柔性,无线植入物,该植入物在术后即时术中提供了短暂的损伤神经的精确控制的ES。后期,快速,完整和安全的生物吸附模式自然,并迅速消除所有组成材料,而无需手术提取。生物吸附率异常高得出,从使用独特的双层外壳结合了生物相容性形式的多丙二醇形式作为封装结构的两种不同的公式,以加速活性成分和限量片段的吸收直至完全吸收。由胫骨神经横断的小鼠模型与重新施加症的鼠标表明,该系统提供了与常规有线刺激器相匹配的性能和功效水平,但无需扩展手术周期或提取设备硬件。
摘要髓鞘促进了沿轴突的动作电位的快速传导。在中枢神经系统(CNS)中,髓鞘轴突的直径超过100倍,传导速度随直径的增加线性缩放。轴突直径和髓鞘形成密切相互联系,轴突直径对髓鞘产生了强大的影响。相反,周围神经系统中的骨髓鞘裂细胞既可以正面和负面影响轴突直径。但是,轴突直径是否受到中枢神经系统少突胶质细胞的调节。在这里,我们研究了使用小鼠(MBP SHI/SHI和M YRF条件敲除)和斑马鱼(Olig2 morpholino)模型的CNS轴突直径生长。我们发现,CNS轴突无法实现适当和多样的直径,轴突的包裹也不是紧凑的髓磷脂的形成。这表明发育中心的轴突直径生长与髓鞘形成无关,并表明CNS和PNS的髓细胞细胞差异地影响了轴突形态。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2024年8月29日发布。 https://doi.org/10.1101/2023.04.18.537392 doi:biorxiv preprint
显着性陈述我们在同一动物队列中获得了功能和结构指标,即传导速度,途径长度,轴突直径和G-RATIO。在大鼠运动皮质中对侧光遗传学刺激后,通过电生理测量获得了触及传导时间。组织的冷冻固定揭示了直径分布中不同亚种群的不同收缩。测得的潜伏期对应于小轴突亚群,直径延伸至用电子显微镜获得的分布模式。扩散-MRI在校正直径加权和收缩后,主要对用组织学获得的较大轴突敏感。不同的模态可能对轴突投影的结构 - 功能关系具有非常不同的敏感性,轴突投影必须在解释中解释。摘要神经纤维的结构功能关系描述了轴突直径,髓磷脂厚度(即G-Ratio)和传导速度之间的经验确定的线性关系。我们研究了通过啮齿动物大脑的call体突出的轴突中不同方式的结构 - 功能关系。我们使用光遗传学诱发的局部场电位(LFP)和基于扩散磁共振成像(DMRI)的拖拉术测量Callosal长度后测量了转基因传导时间。拖拉术遵循与call体中荧光标记的轴突相同的投影。在同一动物中,使用透射电子显微镜(TEM)和DMRI定量轴突直径。TEM的轴突分布表明双峰群体,其中较大的轴突比较小的轴突比较小的轴突与冷冻-TEM进行比较。将收缩校正施加到脱水组织TEM的轴突直径上时,它们与同一动物中获得的DMRI的估计更好地对齐。测量的LFP预测了与轴突分布的主要模式相一致的轴突直径,而由DMRI估计的大轴突预测潜伏期太短,无法通过LFPS测量。不同的方式显示出不同程度的变化,在动物之间较低,表明这种变异在方法论上是主导的 - 不是解剖学上。我们的结果表明,模式与整个轴突直径分布具有不同的灵敏度曲线。因此,在解释方法的度量预测时必须谨慎,因为它可能不代表完整的轴突投影的结构 - 功能关系的子部分。
1 1,凯克医学院,南加州大学罗斯基眼科研究所,南加州大学,洛杉矶大学,洛杉矶,加利福尼亚州,美国,美国,生物医学工程系2,维特比工程学院,南加州大学,南加州大学,洛杉矶大学,洛杉矶大学,加利福尼亚州,加利福尼亚州,美国3号医学院,加利福尼亚州洛斯利亚大学,加利福尼亚州,凯克大学,凯克,校园,美国州,美国第四电气和计算机工程系,维特比工程学院,南加州大学,洛杉矶大学,加利福尼亚,美国,美国,波士顿科学神经调节5,美国,加利福尼亚州,美国加利福尼亚州瓦伦西亚,美国6约翰逊和约翰逊,美国6号约翰逊和约翰逊加利福尼亚州,美国,凯克医学院神经外科8号,南加州大学,洛杉矶,加利福尼亚,美国,美国1,凯克医学院,南加州大学罗斯基眼科研究所,南加州大学,洛杉矶大学,洛杉矶,加利福尼亚州,美国,美国,生物医学工程系2,维特比工程学院,南加州大学,南加州大学,洛杉矶大学,洛杉矶大学,加利福尼亚州,加利福尼亚州,美国3号医学院,加利福尼亚州洛斯利亚大学,加利福尼亚州,凯克大学,凯克,校园,美国州,美国第四电气和计算机工程系,维特比工程学院,南加州大学,洛杉矶大学,加利福尼亚,美国,美国,波士顿科学神经调节5,美国,加利福尼亚州,美国加利福尼亚州瓦伦西亚,美国6约翰逊和约翰逊,美国6号约翰逊和约翰逊加利福尼亚州,美国,凯克医学院神经外科8号,南加州大学,洛杉矶,加利福尼亚,美国,美国
摘要 中风、脑和脊髓创伤等中枢神经系统 (CNS) 损伤常常会导致永久性残疾,因为成人 CNS 神经元仅表现出有限的轴突再生。大脑具有令人惊讶的损伤后自我恢复的内在能力。然而,恶劣的外部微环境严重阻碍了轴突再生。最近的进展表明,内在再生途径的失活在大多数成人 CNS 神经元再生失败中起着关键作用。特别是,大量证据令人信服地证明雷帕霉素的机制靶点 (mTOR) 信号传导是驱动各种 CNS 损伤中轴突再生和发芽的最关键的内在再生途径之一。在这篇综述中,我们将讨论最近的发现,并强调 mTOR 通路在不同类型 CNS 损伤中轴突再生中的重要作用。重要的是,我们将证明,通过阻断关键的 mTOR 信号成分(如磷酸酶和张力蛋白同源物 (PTEN))可以重新激活该再生途径。鉴于多种 mTOR 信号成分是该途径的内源性抑制因子,我们将讨论特别适合此目的的基于 RNA 的疗法的良好潜力,以及它们在 2019 年冠状病毒病疫苗成功后最近引起了广泛关注的事实。为了专门解决血脑屏障问题,我们将回顾当前将这些 RNA 疗法输送到大脑的技术,重点是纳米颗粒技术。我们将提出将这些 RNA 介导的疗法与针对 mTOR 信号成分的脑靶向药物输送方法相结合的临床应用,作为一种有效可行的治疗策略,旨在增强轴突再生,实现中枢神经系统损伤后的功能恢复。关键词:轴突发芽;轴突再生;脑靶向药物输送;中枢神经系统损伤;缺血性中风;mTOR;纳米粒子;神经回路重建; PTEN;基于 RNA 的疗法
BRISBANE, Australia, April 03, 2024 (GLOBE NEWSWIRE) -- NOVONIX Limited (NASDAQ: NVX, ASX: NVX) (“NOVONIX” or “the Company”), a leading battery materials and technology company, today announced that it has signed a definitive agreement under which its wholly owned subsidiary, MD South Tenements Pty Ltd, which holds the Mount Dromedary natural graphite exploration兴趣将被剥离为锂能量有限公司(ASX:LEL)的子公司Axon Grustite Limited(“ Axon”)。lel将根据协议对轴突的伯克和Corella Phaphite项目贡献其权益。作为交易的考虑,Novonix将获得Axon的股份,当事方打算在澳大利亚证券交易所(“ ASX”)上列出。交易需要完成当事方的尽职调查,拟议的首次公开发行(“ IPO”)的完成,并获得了将Axon录取给ASX的批准。
项目详情 项目代码 MRCNMH25Ba 病房标题 涉及轴突体积和髓鞘形成的大脑生长机制与自闭症谱系障碍有关。 研究主题 神经科学与心理健康 摘要 正确的轴突体积和髓鞘形成对神经元功能至关重要。目前对控制轴突体积的机制知之甚少,大脑髓鞘的流失发生在衰老和常见的与年龄相关的神经退行性疾病,如阿尔茨海默病中。越来越多的证据还将髓鞘水平改变与自闭症谱系障碍(ASD;影响全球每 160 人中约 1 人)联系起来。该项目旨在确定一种新型轴突体积和髓鞘形成调节剂的作用机制,该调节剂被认为与 ASD 有联系。描述意义:大约每 160 人中就有 1 人被诊断患有自闭症谱系障碍 (ASD),通常与多动症、焦虑、抑郁和癫痫等使人衰弱的精神健康疾病有关。几种遗传性疾病及其动物模型将 ASD 与大脑髓鞘形成的变化联系起来。在生长障碍 Silver-Russell 综合征 (SRS) 中,一部分病例与印记的 GRB10 基因有关。这些患者中约有 60% 被诊断患有 ASD 并伴有持续发育迟缓。因此,尽管罕见,SRS 提供了一个独特的机会来深入了解 ASD 和其他常见精神健康障碍的潜在机制。挑战:ASD 及其合并症具有复杂的遗传起源。潜在的细胞和分子机制尚不清楚。原创性:学生将使用独特的 GRB10 SRS 小鼠模型,这些模型表现出与 ASD 特征一致的改变的社会行为。初步数据表明,由于轴突体积发育增大和髓鞘形成变化导致大脑生长改变,这是导致这些行为变化的原因。重要的是,我们对 GRB10 的了解表明这些细胞变化存在可测试的机制,涉及调节胰岛素和 mTOR 信号传导,可能始于早期胚胎发育。项目目标:a) 确定 GRB10 突变体和野生型同窝动物在大脑发育的不同阶段的轴突体积和髓鞘沉积变化。b) 确定细胞机制是否涉及改变的胰岛素受体和 mTOR 信号传导。c) 使用新的家笼视频分析技术评估 GRB10 突变小鼠的社会行为变化。d) 使用大规模全基因组人类群体数据测试 GRB10 与 ASD 或大脑结构特征之间的联系。学生所有权:学生在追求每个目标时都有机会探索自己的想法。他们将:a) 选择各种方法来检查轴突,从基本的组织学到电子扫描显微镜和复杂的 MRI 成像。b) 决定如何最好地将小鼠遗传学与细胞生物学和成像相结合,
轴突是一种较细的,类似电缆的投影,可以延长数十万,数百甚至数万som的直径的倍数。轴突主要将神经信号远离躯体,并将某些类型的信息带回到其中。许多神经元只有一个轴突,但是这种轴突可能(通常都会)在广泛的分支下,从而可以与许多目标细胞进行通信。从躯体出现的轴突部分称为轴突小丘。除了是解剖结构外,轴突小丘还具有最大的电压依赖性钠通道密度。这使其成为神经元和轴突的尖峰启动区的最容易激发部分。用电生理术语,它具有最负阈值的潜力。