摘要:生物制剂的配方开发是确保生物药物药物(例如单克隆抗体(MAB))由于复杂的降解和聚集途径而产生的安全性和功效的关键。的工作已经由合作者完成,以将簇形成与粘度联系起来,并采用粗粒子建模来了解相关配方中的蛋白质 - 蛋白质相互作用。尽管存在稀释浓度制度(1-10 mg/ml)的配方筛选方法,但在相关配方浓度下,在生物制剂开发过程中,需要更深入地了解适当的工具。我们将小角度X射线散射(SAX)与其他生物物理工具合并,以洞悉pH和缓冲系统对药物相关生物制剂稳定性的作用。在这次演讲中,我将讨论如何利用先进的生物物理和粒子表征工具来推动制药行业中复杂生物制剂的创新并加速发展,并将讨论我从学术界到工业的旅程。
J Cummings has provided consultation to Acadia, Alkahest, AlphaCognition, AriBio, Biogen, Cassava, Cortexyme, Diadem, EIP Pharma, Eisai, GemVax, Genentech, Green Valley, Grifols, Janssen, Karuna, Lilly, LSP, Merck, NervGen, Novo Nordisk A/S, Oligomerix, Ono, Otsuka,Prodeo,Prothena,Remynd,Resverlogix,Roche,Cignant Health,Suven和United Neuroscience Pharmaceutical,评估和投资公司。他得到了美国国家一般医学科学研究所(NIGMS)的支持。国家神经系统疾病与中风研究所(NINDS)授予U01NS093334;国家老化研究所(NIA)赠款R01AG053798,P20AG068053,P30AG072959和R35AG71476;阿尔茨海默氏病药物发现基金会(ADDF);泰德(Ted)和玛丽亚·奎克(Maria Quirk)的捐赠;以及欢乐钱伯斯·瑞迪的捐赠。G Grossberg已向Acadia,Alkahest,Avanir,Axovant,Axsome Therapeutics,Biogen,Bioxcel,Gioxcel,Genentech,Karuna,Lundbeck,Otsuka,Roche,Roche和Takeda提供了咨询。他为礼来,罗氏和美国国家衰老研究所提供了研究支持。他曾在Acadia,Biogen和Eisai的发言人局任职,并曾在Anavex,Erydel,Elydarlulartherapies,Merck,Newron,Newron和Doligomerix的安全监测委员会任职。A.P. Porsteinsson报告了Acadia Pharmaceuticals,Athira,Biogen,BMS,认知研究公司,EISAI,功能性神经调节,IQVIA,IQVIA,Lundbeck,Novartis,Ono Pharmaceuticals,Otsuka,Otsuka,WebMD和Xenon;从Alector,Athira,Biogen,Cassava,Eisai,Eli Lilly,Genentech/Roche,Roche,Vaccinex,Nia,Nia,Nimh和Dod授予他的机构。A.P.Porsteinsson报告了Acadia Pharmaceuticals,Athira,Biogen,BMS,认知研究公司,EISAI,功能性神经调节,IQVIA,IQVIA,Lundbeck,Novartis,Ono Pharmaceuticals,Otsuka,Otsuka,WebMD和Xenon;从Alector,Athira,Biogen,Cassava,Eisai,Eli Lilly,Genentech/Roche,Roche,Vaccinex,Nia,Nia,Nimh和Dod授予他的机构。
c chepke已在Abvie,Acadia,Alkermes,Axsome,Biogen,corium,fidorsia,Celluur,Celluur,Janssen,Karuna,Lundbeck,Moderna,Moderna,Neurocrine,Neurocrine,Neurocrine,Neurocrine,Nosuka,Nosuka,Nosuka,Sumitomo,Teva中;他曾担任Abvie,Acadia,Alkermes,Axsome,Biogen,Boehriinger Inding,Corium,Corium,细胞内,Janssen,Karuna,Karuna,Lundbeck,Medincell,Medincell,Mostha,Moderna,Neyurocrine,Neurocrine,Neurocrine,Neurocrine,Neurocrine,Nosauka,Nosauka,sumitomo,teva;他曾与Abbvie,Acadia,Alkermes,Axsome,Corium,Corium,Intra Intra,Jansen,Karuna,Luddbeck,Luddbeck,Merck,Merck,Neurrocrine,Noarcrine,Noven,Noven,Ossuka,Ossuka,Teva一起任职;从Acadia,Axsome,Harmony,Neurrocrine,Teva中获得最佳结果,有很多方法可以从您的搜索结果中获得最佳结果。Muzyk从Axsome,Neurocrine和Otsuka获得了演讲者的酬金;他曾在Axsome和neurocrine的咨询委员会中脱颖而出。M FAVA的披露列在以下网址:https://mghcme.org/app/uploads/2021/07/mf-disclosures-lifetme-- Updated--july-2021.pdf。d iososscu已从Alkermes,Allermes,Axsome,Biogen,精神病学中心,爵士,Lundbeck,Otsuka,Precision Neuroscience,Sage,Sunovion,Sunovion获得了咨询荣誉。他从Alkermes,Astra Zeneca,Brainsway,Litecure,Litecure,Neosync,Otsuka,Roche,Roche,Shire获得了研究支持(通过其学术机构)。C. Andersson,C。Streicher和H. Tabuteau目前是Axsome Therapetics的Embillyees。
对于金属有机骨架 (MOF) 薄膜的光电应用,能够制造相对于基底表面法线高度取向的薄膜和异质结构非常重要。但是,如果没有足够详细的沉积薄膜结构表征,实现此目标的工艺优化将非常困难。结果表明,实验室系统的 2D 掠入射广角 X 射线散射 (GIWAXS) 数据对于提供此类表征大有帮助,并且可以 1) 比 1D 扫描更好地测试结构模型,2) 提供具有所需表面取向纹理(2D 粉末)的沉积薄膜部分的定量估计(可用于工艺优化),以及 3) 提供此类信息作为薄膜深度的函数(可用于异质结构表征)。本文在理解 MOF 薄膜的背景下介绍了 GIWAXS 数据收集和分析,然后展示了如何通过最小化溶液中的成核作用将通过蒸汽辅助转化制备的 UiO-66 的所需取向分数(2D 粉末分数)从 4% 提高到 95% 以上。最后,证明了一旦优化合成方案,就可以生长 UiO-66 和 UiO-67 的异质结构,其中两层都是高度有序的(UiO-66 83%,UiO-67 > 94%)。