版权声明:本课程幻灯片中展示的大多数示例和图像均取自 [Russell & Norwig, “Artificial Intelligence, a Modern Approach”, 3 rd ed., Pearson] ,包括上述书中的明确图表,因此其版权由作者保留。其他一些材料(文本、图表、示例)的作者(按字母顺序排列):Pieter Abbeel、Bonnie J. Dorr、Anca Dragan、Dan Klein、Nikita Kitaev、Tom Lenaerts、Michela Milano、Dana Nau、Maria Simi,他们保留其版权。未经作者许可,这些幻灯片不得公开展示。1 / 29
版权声明:本课程幻灯片中展示的大多数示例和图像均取自 [Russell & Norwig,《人工智能,一种现代方法》,第 3 版,Pearson],包括上述书中的明确图表,因此其版权由作者保留。其他一些材料(文本、图表、示例)的作者(按字母顺序排列):Pieter Abbeel、Bonnie J. Dorr、Anca Dragan、Dan Klein、Nikita Kitaev、Tom Lenaerts、Michela Milano、Dana Nau、Maria Simi,他们保留其版权。未经作者许可,这些幻灯片不得公开展示。
版权声明:本课程幻灯片中展示的大多数示例和图像均取自 [Russell & Norwig,《人工智能,一种现代方法》,第 3 版,Pearson],包括上述书中的明确图表,因此其版权由作者保留。其他一些材料(文本、图表、示例)的作者(按字母顺序排列):Pieter Abbeel、Bonnie J. Dorr、Anca Dragan、Dan Klein、Nikita Kitaev、Tom Lenaerts、Michela Milano、Dana Nau、Maria Simi,他们保留其版权。未经作者许可,这些幻灯片不得公开展示。
版权声明:本课程幻灯片中展示的大多数示例和图像均取自 [Russell & Norwig,《人工智能,一种现代方法》,第 3 版,Pearson],包括上述书中的明确图表,因此其版权由作者保留。其他一些材料(文本、图表、示例)的作者(按字母顺序排列):Pieter Abbeel、Bonnie J. Dorr、Anca Dragan、Dan Klein、Nikita Kitaev、Tom Lenaerts、Michela Milano、Dana Nau、Maria Simi,他们保留其版权。未经作者许可,这些幻灯片不得公开展示。
1。J. Ho,A。Jain和P. Abbeel。 剥离扩散概率模型。 2020-12- doi:10.48550/arxiv.2006.11239 2。 A. Nichol和P. Dhariwal。 改进了扩散概率模型。 2021-02-18。 doi:10.48550/arxiv.2102.09672 3。 Jänner,M.,Du,Y.,Tenenbaum,J. B.和Levine,S。(2022)。 计划扩散,以进行柔性链球合成。 Arxiv(康奈尔大学)。 doi:10.48550/arxiv.2205.09991 4。 Carvalho,J。F.,Le,A。T.,Baierl,M.,Koert,D。,&Peters,J。 (2023)。 运动计划扩散:通过扩散模型对机器人运动的学习和计划。 Arxiv(康奈尔大学)。 doi:10.48550/arxiv.2308.01557 5。 S. M. Lavalle,计划算法,2006年,剑桥出版社6。 Mark Moll,Ioan A. ucan,Lydia E. Kavraki,基准运动计划算法:一种可扩展的分析和可视化基础架构,IEEE Robotics&Automation Magazine,22(3):96-102:96-102,2015年9月。J. Ho,A。Jain和P. Abbeel。剥离扩散概率模型。2020-12- doi:10.48550/arxiv.2006.11239 2。A. Nichol和P. Dhariwal。改进了扩散概率模型。2021-02-18。 doi:10.48550/arxiv.2102.09672 3。Jänner,M.,Du,Y.,Tenenbaum,J. B.和Levine,S。(2022)。 计划扩散,以进行柔性链球合成。 Arxiv(康奈尔大学)。 doi:10.48550/arxiv.2205.09991 4。 Carvalho,J。F.,Le,A。T.,Baierl,M.,Koert,D。,&Peters,J。 (2023)。 运动计划扩散:通过扩散模型对机器人运动的学习和计划。 Arxiv(康奈尔大学)。 doi:10.48550/arxiv.2308.01557 5。 S. M. Lavalle,计划算法,2006年,剑桥出版社6。 Mark Moll,Ioan A. ucan,Lydia E. Kavraki,基准运动计划算法:一种可扩展的分析和可视化基础架构,IEEE Robotics&Automation Magazine,22(3):96-102:96-102,2015年9月。Jänner,M.,Du,Y.,Tenenbaum,J.B.和Levine,S。(2022)。计划扩散,以进行柔性链球合成。Arxiv(康奈尔大学)。doi:10.48550/arxiv.2205.09991 4。Carvalho,J。F.,Le,A。T.,Baierl,M.,Koert,D。,&Peters,J。(2023)。运动计划扩散:通过扩散模型对机器人运动的学习和计划。Arxiv(康奈尔大学)。doi:10.48550/arxiv.2308.01557 5。S. M. Lavalle,计划算法,2006年,剑桥出版社6。Mark Moll,Ioan A. ucan,Lydia E. Kavraki,基准运动计划算法:一种可扩展的分析和可视化基础架构,IEEE Robotics&Automation Magazine,22(3):96-102:96-102,2015年9月。
[FEL49] William Feller。“关于随机过程的理论,对应用的尤为参考”。:1949年。URL:https:// api。Spenticscholar.org/corpusid:121027442。[SE19] Yang Song和Stefano Ermon。“通过估计数据分布梯度来生成建模”。in:神经信息处理系统的进步32(2019)。[HJA20] Jonathan Ho,Ajay Jain和Pieter Abbeel。“降级扩散概率模型”。in:神经信息处理系统的进步33(2020),pp。6840–6851。[儿子+20] Yang Song等。“通过stochastic微分方程基于得分的生成建模”。in:arxiv预印arxiv:2011.13456(2020)。[DN21] Prafulla Dhariwal和Alexander Nichol。“扩散模型在图像合成上击败了gans”。in:神经信息过程的进步34(2021),pp。8780–8794。[Kin+21] Diederik Kingma等。“变化扩散模型”。in:神经信息处理系统的进步34(2021),pp。21696–21707。[HS22] Jonathan Ho和Tim Salimans。“无分类器扩散指南”。in:arxiv预印术:2207.12598(2022)。[CHI+23] Cheng Chi等。“扩散策略:通过行动扩散进行视觉策略学习”。in:arxiv预印术:2303.04137(2023)。
Robotics Survey Pieter Abbeel, David Abbink, Farshid Alambeigi, Farshad Arvin, Nikolay Atanasov, Ruzena Bajcsy, Philip Beesley, Tapomayukh Bhattacharjee, Jeannette Bohg, David J. Cappelleri, Qifeng Chen, I-Ming Chen, Jackie Cheng, Cynthia Chem, Chemo, Steve Chryso Collins, David Correa, Brandon DeHart, Katie Driggs-Campbell, Nima Fazeli, Animesh Garg, Maged Ghoneima, Tobias Haschke, Kris Hauser, David Held, Yue Hu, Josie Hughes, Soo Jeon, Dimitrios Kanoulas, Jonathan Kelly, Oliver Kroemer, Changlio Liu, Maud, Martin, and Sajum. buro Matunaga, Satoshi Miura, Norrima Mokhtar, Elena De Momi, Christopher Nehaniv, Christopher Nielsen, Ryuma Niyama, Allison Okamura, Necmiye Ozay, Jamie Paik, Frank Park, Karthik Ramani, Carolyn Ren, Jan Rosell, Jee-Hwan Ryu, Tim Salcudean, Oliver Scheider, Peter Sommons, Alva Schoen, Stone ne, Michael Tolley, Tsu-Chin Tsao, Michiel van de Panne, Andy Weightman, Alexander Wong, Helge Wurdemann, Rong Xiong, Chao Xu, Geng Yang, Junzhi Yu, Wenzhen Yuan, Fu Zhang, Yuke Zhu
Yoshua Bengio Mila -Quebec AI研究所,蒙特罗张教大学AI国际治理研究所,张教大学shai Shaiv-Shalev-Shwartz,耶路撒冷吉利安·吉利安·哈德菲尔德大学多伦多,施瓦茨·雷斯曼学院。技术与社会,矢量研究所。不列颠哥伦比亚省杰夫·克莱恩大学,载体学院Tegan Maharaj大学多伦多大学,Schwartz Reisman Inst。技术与社会,矢量研究所。Frank Hutter Ellis Institute t ubingen,弗里伯格·阿利姆·吉纳斯大学卖出牛津·希拉·希拉·希拉·麦克拉斯大学多伦多,施瓦茨·雷斯曼学院。技术与社会,矢量研究所。Qiqi Gao东部中国政治学与法律大学Ashwin Acharya Rand公司David Krueger剑桥大学ANCA DRAGAN DRAGAN UC BERKELEY UC BERKELEY PHILIP UNIOPYS OXFORD FORDER OXFORD StUART Stuart Russell UC Berkeley Daniel Daniel Daniel Kahneman公立与国际事务学院学院,大学Qiqi Gao东部中国政治学与法律大学Ashwin Acharya Rand公司David Krueger剑桥大学ANCA DRAGAN DRAGAN UC BERKELEY UC BERKELEY PHILIP UNIOPYS OXFORD FORDER OXFORD StUART Stuart Russell UC Berkeley Daniel Daniel Daniel Kahneman公立与国际事务学院学院,大学
[1] Michael Ahn、Anthony Brohan、Noah Brown、Yevgen Chebotar、Omar Cortes、Byron David、Chelsea Finn、Keerthana Gopalakrishnan、Karol Hausman、Alex Herzog 等人。2022 年。尽我所能,不要照我说的做:为机器人可供性奠定语言基础。arXiv 预印本 arXiv:2204.01691 (2022)。[2] Chris Baker、Rebecca Saxe 和 Joshua Tenenbaum。2011 年。贝叶斯心智理论:建模联合信念-愿望归因。在认知科学学会年会论文集,第 33 卷。[3] Chris L Baker、Noah D Goodman 和 Joshua B Tenenbaum。2008 年。基于理论的社会目标推理。在认知科学学会第三十届年会论文集。 Citeseer,1447–1452。[4] Chris L Baker 和 Joshua B Tenenbaum。2014 年。使用贝叶斯心理理论对人类计划识别进行建模。计划、活动和意图识别:理论与实践 7 (2014),177–204。[5] Andreea Bobu、Marius Wiggert、Claire Tomlin 和 Anca D Dragan。2021 年。特征扩展奖励学习:重新思考人类输入。在 2021 年 ACM/IEEE 人机交互国际会议论文集上。216–224。[6] Andreea Bobu、Marius Wiggert、Claire Tomlin 和 Anca D Dragan。2022 年。通过学习特征在奖励学习中诱导结构。国际机器人研究杂志 (2022),02783649221078031。[7] Mustafa Mert Çelikok、Tomi Peltola、Pedram Daee 和 Samuel Kaski。2019 年。具有心智理论的交互式人工智能。arXiv 预印本 arXiv:1912.05284 (2019)。[8] Aakanksha Chowdhery、Sharan Narang、Jacob Devlin、Maarten Bosma、Gaurav Mishra、Adam Roberts、Paul Barham、Hyung Won Chung、Charles Sutton、Sebastian Gehrmann 等人。2022 年。Palm:使用路径扩展语言建模。arXiv 预印本 arXiv:2204.02311 (2022)。[9] Harmen De Weerd、Rineke Verbrugge 和 Bart Verheij。 2013. 了解她知道你知道的事情有多大帮助?一项基于代理的模拟研究。人工智能 199 (2013),67–92。[10] Jacob Devlin、Ming-Wei Chang、Kenton Lee 和 Kristina Toutanova。2018. Bert:用于语言理解的深度双向变压器的预训练。arXiv 预印本 arXiv:1810.04805 (2018)。[11] Prafulla Dhariwal 和 Alexander Nichol。2021. 扩散模型在图像合成方面击败了 gans。神经信息处理系统进展 34 (2021),8780–8794。[12] Prashant Doshi、Xia Qu、Adam Goodie 和 Diana Young。2010. 使用经验主义交互式 POMDP 对人类的递归推理进行建模。在第九届自主智能体和多智能体系统国际会议论文集:第 1 卷-第 1 卷。1223–1230。[13] 段佳飞、余志强、谭辉、朱宏远和陈志东。2022 年。具身人工智能调查:从模拟器到研究任务。IEEE 计算智能新兴主题汇刊 (2022 年)。[14] 段佳飞、余志强、谭辉、易立和陈志东。2022 年。BOSS:对象上下文场景中人类信念预测的基准。arXiv 预印本 arXiv:2206.10665 (2022 年)。[15] David Engel、Anita Woolley、Lisa Jing、Christopher Chabris 和 Thomas Malone。2014 年。从眼睛读懂心思还是从字里行间读懂心思?心智理论在线上和面对面时同样能预测集体智慧。PloS one 9 (12 2014),e115212。https://doi.org/10.1371/journal.pone.0115212 [16] Dylan Hadfield-Menell、Stuart J Russell、Pieter Abbeel 和 Anca Dragan。2016 年。合作逆强化学习。神经信息处理系统的进展 29 (2016)。[17] Yanlin Han 和 Piotr Gmytrasiewicz。2018 年。使用交互式 POMDP 在多智能体环境中学习他人的意向模型。神经信息处理系统的进展 31 (2018)。 [18] 何开明、张翔宇、任少卿和孙健。2016 年。深度残差学习在图像识别中的应用。IEEE 计算机视觉与模式识别会议论文集。770–778。[19] Jonathan Ho、Ajay Jain 和 Pieter Abbeel。2020 年。去噪扩散概率模型。神经信息处理系统进展 33(2020 年),6840–6851。[20] Kyriaki Kalimeri 和 Ingvar Tjostheim。2020 年。人工智能与对未来的担忧:挪威案例研究。在《分布式、环境和普适交互》中,Norbert Streitz 和 Shin'ichi Konomi(编辑)。Springer International Publishing,Cham,273–284。 [21] Max Kleiman-Weiner、Mark K Ho、Joseph L Austerweil、Michael L Littman 和 Joshua B Tenenbaum。2016 年。协调合作或竞争:社交互动中的抽象目标和共同意图。《认知科学》。[22] Yann LeCun、Yoshua Bengio 和 Geoffrey Hinton。2015 年。深度学习。《自然》521,7553(2015 年),436–444。[23] Maria D. Molina 和 S. Shyam Sundar。0. 对人类的不信任是否预示着对人工智能的更大信任?个体差异在用户对内容审核反应中的作用。新媒体与社会 0, 0 (0), 14614448221103534。https://doi.org/10.1177/14614448221103534 arXiv:https://doi.org/10.1177/14614448221103534 [24] David Premack 和 Guy Woodruff。1978 年。黑猩猩有心理理论吗?行为与脑科学 1, 4 (1978),515–526。[25] David Premack 和 Guy Woodruff。1978 年。黑猩猩有心理理论吗?行为与脑科学 1, 4 (1978),515–526。 https://doi.org/10.1017/S0140525X00076512 [26] Neil Rabinowitz、Frank Perbet、Francis Song、Chiyuan Zhang、SM Ali Eslami 和 Matthew Botvinick。2018 年。机器心智理论。国际机器学习会议。PMLR,4218–4227。[27] Aditya Ramesh、Mikhail Pavlov、Gabriel Goh、Scott Gray、Chelsea Voss、Alec Radford、Mark Chen 和 Ilya Sutskever。2021 年。零样本文本到图像生成。国际机器学习会议。PMLR,8821–8831。org/10.1371/journal.pone.0115212 [16] Dylan Hadfield-Menell、Stuart J Russell、Pieter Abbeel 和 Anca Dragan。2016 年。合作式逆强化学习。神经信息处理系统进展 29(2016 年)。[17] Yanlin Han 和 Piotr Gmytrasiewicz。2018 年。使用交互式 POMDP 在多智能体环境中学习他人的意向模型。神经信息处理系统进展 31(2018 年)。[18] Kaiming He、Xiangyu Zhang、Shaoqing Ren 和 Jian Sun。2016 年。用于图像识别的深度残差学习。IEEE 计算机视觉与模式识别会议论文集。770–778。[19] Jonathan Ho、Ajay Jain 和 Pieter Abbeel。 2020. 去噪扩散概率模型。神经信息处理系统进展 33 (2020),6840–6851。[20] Kyriaki Kalimeri 和 Ingvar Tjostheim。2020. 人工智能与对未来的担忧:挪威案例研究。在分布式、环境和普适交互中,Norbert Streitz 和 Shin'ichi Konomi(编辑)。Springer International Publishing,Cham,273–284。[21] Max Kleiman-Weiner、Mark K Ho、Joseph L Austerweil、Michael L Littman 和 Joshua B Tenenbaum。2016. 协调合作或竞争:社交互动中的抽象目标和共同意图。在 CogSci 中。[22] Yann LeCun、Yoshua Bengio 和 Geoffrey Hinton。2015. 深度学习。 nature 521, 7553 (2015), 436–444。[23] Maria D. Molina 和 S. Shyam Sundar。0. 对人类的不信任是否预示着对人工智能的信任度更高?个体差异在用户对内容审核的反应中的作用。新媒体与社会 0, 0 (0), 14614448221103534。https://doi.org/10.1177/14614448221103534 arXiv:https://doi.org/10.1177/14614448221103534 [24] David Premack 和 Guy Woodruff。1978 年。黑猩猩有心智理论吗?行为与脑科学 1, 4 (1978), 515–526。[25] David Premack 和 Guy Woodruff。 1978. 黑猩猩有心智理论吗?行为与脑科学 1, 4 (1978),515–526。https://doi.org/10.1017/S0140525X00076512 [26] Neil Rabinowitz、Frank Perbet、Francis Song、Chiyuan Zhang、SM Ali Eslami 和 Matthew Botvinick。2018. 机器心智理论。在国际机器学习会议上。PMLR,4218–4227。[27] Aditya Ramesh、Mikhail Pavlov、Gabriel Goh、Scott Gray、Chelsea Voss、Alec Radford、Mark Chen 和 Ilya Sutskever。2021. 零样本文本到图像生成。在国际机器学习会议上。PMLR,8821–8831。org/10.1371/journal.pone.0115212 [16] Dylan Hadfield-Menell、Stuart J Russell、Pieter Abbeel 和 Anca Dragan。2016 年。合作式逆强化学习。神经信息处理系统进展 29(2016 年)。[17] Yanlin Han 和 Piotr Gmytrasiewicz。2018 年。使用交互式 POMDP 在多智能体环境中学习他人的意向模型。神经信息处理系统进展 31(2018 年)。[18] Kaiming He、Xiangyu Zhang、Shaoqing Ren 和 Jian Sun。2016 年。用于图像识别的深度残差学习。IEEE 计算机视觉与模式识别会议论文集。770–778。[19] Jonathan Ho、Ajay Jain 和 Pieter Abbeel。 2020. 去噪扩散概率模型。神经信息处理系统进展 33 (2020),6840–6851。[20] Kyriaki Kalimeri 和 Ingvar Tjostheim。2020. 人工智能与对未来的担忧:挪威案例研究。在分布式、环境和普适交互中,Norbert Streitz 和 Shin'ichi Konomi(编辑)。Springer International Publishing,Cham,273–284。[21] Max Kleiman-Weiner、Mark K Ho、Joseph L Austerweil、Michael L Littman 和 Joshua B Tenenbaum。2016. 协调合作或竞争:社交互动中的抽象目标和共同意图。在 CogSci 中。[22] Yann LeCun、Yoshua Bengio 和 Geoffrey Hinton。2015. 深度学习。 nature 521, 7553 (2015), 436–444。[23] Maria D. Molina 和 S. Shyam Sundar。0. 对人类的不信任是否预示着对人工智能的信任度更高?个体差异在用户对内容审核的反应中的作用。新媒体与社会 0, 0 (0), 14614448221103534。https://doi.org/10.1177/14614448221103534 arXiv:https://doi.org/10.1177/14614448221103534 [24] David Premack 和 Guy Woodruff。1978 年。黑猩猩有心智理论吗?行为与脑科学 1, 4 (1978), 515–526。[25] David Premack 和 Guy Woodruff。 1978. 黑猩猩有心智理论吗?行为与脑科学 1, 4 (1978),515–526。https://doi.org/10.1017/S0140525X00076512 [26] Neil Rabinowitz、Frank Perbet、Francis Song、Chiyuan Zhang、SM Ali Eslami 和 Matthew Botvinick。2018. 机器心智理论。在国际机器学习会议上。PMLR,4218–4227。[27] Aditya Ramesh、Mikhail Pavlov、Gabriel Goh、Scott Gray、Chelsea Voss、Alec Radford、Mark Chen 和 Ilya Sutskever。2021. 零样本文本到图像生成。在国际机器学习会议上。PMLR,8821–8831。在 IEEE 计算机视觉与模式识别会议论文集上。770–778。[19] Jonathan Ho、Ajay Jain 和 Pieter Abbeel。2020 年。去噪扩散概率模型。神经信息处理系统进展 33 (2020),6840–6851。[20] Kyriaki Kalimeri 和 Ingvar Tjostheim。2020 年。人工智能与对未来的担忧:挪威案例研究。在《分布式、环境和普适交互》中,Norbert Streitz 和 Shin'ichi Konomi(编辑)。Springer International Publishing,Cham,273–284。[21] Max Kleiman-Weiner、Mark K Ho、Joseph L Austerweil、Michael L Littman 和 Joshua B Tenenbaum。 2016. 协调合作或竞争:社会互动中的抽象目标和共同意图。在 CogSci 中。[22] Yann LeCun、Yoshua Bengio 和 Geoffrey Hinton。2015. 深度学习。自然 521,7553(2015),436–444。[23] Maria D. Molina 和 S. Shyam Sundar。0. 对人类的不信任是否预示着对人工智能的更大信任?个体差异在用户对内容审核反应中的作用。新媒体与社会 0, 0 (0),14614448221103534。https://doi.org/10.1177/14614448221103534 arXiv:https://doi.org/10.1177/14614448221103534 [24] David Premack 和 Guy Woodruff。 1978. 黑猩猩有心智理论吗?行为与脑科学 1, 4 (1978), 515–526。[25] David Premack 和 Guy Woodruff。1978. 黑猩猩有心智理论吗?行为与脑科学 1, 4 (1978), 515–526。https://doi.org/10.1017/S0140525X00076512 [26] Neil Rabinowitz、Frank Perbet、Francis Song、Chiyuan Zhang、SM Ali Eslami 和 Matthew Botvinick。2018. 机器心智理论。国际机器学习会议。PMLR,4218–4227。 [27] Aditya Ramesh、Mikhail Pavlov、Gabriel Goh、Scott Gray、Chelsea Voss、Alec Radford、Mark Chen 和 Ilya Sutskever。2021 年。零样本文本转图像生成。国际机器学习会议。PMLR,8821–8831。在 IEEE 计算机视觉与模式识别会议论文集上。770–778。[19] Jonathan Ho、Ajay Jain 和 Pieter Abbeel。2020 年。去噪扩散概率模型。神经信息处理系统进展 33 (2020),6840–6851。[20] Kyriaki Kalimeri 和 Ingvar Tjostheim。2020 年。人工智能与对未来的担忧:挪威案例研究。在《分布式、环境和普适交互》中,Norbert Streitz 和 Shin'ichi Konomi(编辑)。Springer International Publishing,Cham,273–284。[21] Max Kleiman-Weiner、Mark K Ho、Joseph L Austerweil、Michael L Littman 和 Joshua B Tenenbaum。 2016. 协调合作或竞争:社会互动中的抽象目标和共同意图。在 CogSci 中。[22] Yann LeCun、Yoshua Bengio 和 Geoffrey Hinton。2015. 深度学习。自然 521,7553(2015),436–444。[23] Maria D. Molina 和 S. Shyam Sundar。0. 对人类的不信任是否预示着对人工智能的更大信任?个体差异在用户对内容审核反应中的作用。新媒体与社会 0, 0 (0),14614448221103534。https://doi.org/10.1177/14614448221103534 arXiv:https://doi.org/10.1177/14614448221103534 [24] David Premack 和 Guy Woodruff。 1978. 黑猩猩有心智理论吗?行为与脑科学 1, 4 (1978), 515–526。[25] David Premack 和 Guy Woodruff。1978. 黑猩猩有心智理论吗?行为与脑科学 1, 4 (1978), 515–526。https://doi.org/10.1017/S0140525X00076512 [26] Neil Rabinowitz、Frank Perbet、Francis Song、Chiyuan Zhang、SM Ali Eslami 和 Matthew Botvinick。2018. 机器心智理论。国际机器学习会议。PMLR,4218–4227。 [27] Aditya Ramesh、Mikhail Pavlov、Gabriel Goh、Scott Gray、Chelsea Voss、Alec Radford、Mark Chen 和 Ilya Sutskever。2021 年。零样本文本转图像生成。国际机器学习会议。PMLR,8821–8831。//doi.org/10.1177/14614448221103534 arXiv:https://doi.org/10.1177/14614448221103534 [24] David Premack 和 Guy Woodruff。1978 年。黑猩猩有心理理论吗?行为与脑科学 1, 4 (1978),515–526。 [25] David Premack 和 Guy Woodruff。1978 年。黑猩猩有心理理论吗?行为与脑科学 1, 4 (1978),515–526。 https://doi.org/10.1017/S0140525X00076512 [26] Neil Rabinowitz、Frank Perbet、Francis Song、Chiyuan Zhang、SM Ali Eslami 和 Matthew Botvinick。2018 年。机器心智理论。国际机器学习会议。PMLR,4218–4227。[27] Aditya Ramesh、Mikhail Pavlov、Gabriel Goh、Scott Gray、Chelsea Voss、Alec Radford、Mark Chen 和 Ilya Sutskever。2021 年。零样本文本到图像生成。国际机器学习会议。PMLR,8821–8831。//doi.org/10.1177/14614448221103534 arXiv:https://doi.org/10.1177/14614448221103534 [24] David Premack 和 Guy Woodruff。1978 年。黑猩猩有心理理论吗?行为与脑科学 1, 4 (1978),515–526。 [25] David Premack 和 Guy Woodruff。1978 年。黑猩猩有心理理论吗?行为与脑科学 1, 4 (1978),515–526。 https://doi.org/10.1017/S0140525X00076512 [26] Neil Rabinowitz、Frank Perbet、Francis Song、Chiyuan Zhang、SM Ali Eslami 和 Matthew Botvinick。2018 年。机器心智理论。国际机器学习会议。PMLR,4218–4227。[27] Aditya Ramesh、Mikhail Pavlov、Gabriel Goh、Scott Gray、Chelsea Voss、Alec Radford、Mark Chen 和 Ilya Sutskever。2021 年。零样本文本到图像生成。国际机器学习会议。PMLR,8821–8831。
[1] Dario Amodei、Chris Olah、Jacob Steinhardt、Paul Christiano、John Schulman 和 Dan Mané。2016 年。《人工智能安全中的具体问题》。CoRR abs/1606.06565 (2016)。[2] Berkeley J. Dietvorst、Joseph P. Simmons 和 Cade Massey。2015 年。《算法厌恶:人们在发现算法有错误后会错误地避开它们》。《实验心理学杂志:综合》144, 1 (2015),114。[3] Berkeley J. Dietvorst、Joseph P. Simmons 和 Cade Massey。2018 年。《克服算法厌恶:如果人们可以(即使稍微)修改算法,他们也会使用不完美的算法》。《管理科学》64, 3 (2018),1155–1170。 [4] Julie S. Downs、Mandy B. Holbrook、Steve Sheng 和 Lorrie Faith Cranor。2010 年。您的参与者是否在玩弄系统?筛查 Mechanical Turk 工人。在 SIGCHI 计算机系统人为因素会议论文集上。2399–2402。[5] Jodi Forlizzi 和 Carl DiSalvo。2006 年。家庭环境中的服务机器人:对家用 Roomba 吸尘器的研究。在第一届 ACM SIGCHI/SIGART 人机交互会议论文集上。[6] Dylan Hadfield-Menell、Smitha Milli、Pieter Abbeel、Stuart J. Russell 和 Anca Dragan。2017 年。逆向奖励设计。在神经信息处理系统的发展中。[7] Bill Hibbard。2012 年。避免意外的 AI 行为。在国际通用人工智能会议上。Springer,107–116。[8] Lynn M. Hulse、Hui Xie 和 Edwin R. Galea。2018 年。对自动驾驶汽车的看法:与道路使用者的关系、风险、性别和年龄。安全科学 102(2018 年),1–13。[9] Rafal Kocielnik、Saleema Amershi 和 Paul N. Bennett。2019 年。您会接受不完美的人工智能吗?探索调整人工智能系统最终用户期望的设计。在 CHI 计算系统人为因素会议论文集上。[10] Moritz Körber。2018 年。衡量对自动化信任的理论考虑和问卷的开发。在国际人体工程学协会大会上。Springer,13–30。 [11] Victoria Krakovna、Laurent Orseau、Miljan Martic 和 Shane Legg。2019 年。使用逐步相对可达性惩罚副作用。在 AI 安全研讨会 IJCAI 中。[12] Victoria Krakovna、Laurent Orseau、Richard Ngo、Miljan Martic 和 Shane Legg。2020 年。通过考虑未来任务来避免副作用。在第 20 届神经信息处理系统会议论文集上。[13] Miltos Kyriakidis、Riender Happee 和 Joost CF de Winter。2015 年。公众对自动驾驶的看法:对 5000 名受访者的国际问卷调查结果。交通研究 F 部分:交通心理学和行为 32(2015 年),127–140。 [14] Ramya Ramakrishnan、Ece Kamar、Debadeepta Dey、Julie Shah 和 Eric Horvitz。2018 年。《发现强化学习中的盲点》。《第 17 届自主代理和多代理系统国际会议论文集》。[15] Stuart Russell。2017 年。《可证明有益的人工智能》。《指数生命,下一步》(2017 年)。[16] Sandhya Saisubramanian、Ece Kamar 和 Shlomo Zilberstein。2020 年。一种减轻负面影响的多目标方法。在第 29 届国际人工智能联合会议论文集上。[17] Sandhya Saisubramanian 和 Shlomo Zilberstein。2021 年。通过环境塑造减轻负面影响。在第 20 届自主代理和多智能体系统国际会议论文集上。[18] Sandhya Saisubramanian、Shlomo Zilberstein 和 Ece Kamar。2020 年。避免因对人工智能系统知识不完整而产生的负面影响。CoRR abs/2008.12146 (2020)。[19] Rohin Shah、Dmitrii Krasheninnikov、Jordan Alexander、Pieter Abbeel 和 Anca Dragan。 2019. 世界状态中的隐含偏好。第七届国际学习表征会议论文集。[20] Alexander Matt Turner、Dylan Hadfield-Menell 和 Prasad Tadepalli。2020. 通过可实现效用保存实现保守代理。AAAI/ACM 人工智能、伦理与社会会议论文集。[21] Ming Yin、Jennifer Wortman Vaughan 和 Hanna Wallach。2019. 理解准确度对机器学习模型信任的影响。CHI 计算系统人为因素会议论文集。[22] Shun Zhang、Edmund H. Durfee 和 Satinder P. Singh。2018. 分解马尔可夫决策过程中对副作用的 Minimax-Regret 查询以实现安全最优。在第 27 届国际人工智能联合会议论文集上。