在世界谷物产量统计中,燕麦排在第六位,仅次于小麦、玉米、大米、大麦和高粱。在世界许多地方,燕麦不仅用作谷物,还用作饲料和草料,用作铺垫物、干草、半干草、青贮饲料和谷壳。燕麦作物的主要用途仍然是用作牲畜谷物饲料,平均占世界总使用量的 74% 左右。在印度,燕麦育种始于 20 世纪 80 年代,是印度西北部、中部和东部地区最重要的谷物饲料作物。作为饲料作物,燕麦具有优良的蛋白质质量、脂肪和矿物质含量。它是一种美味、多汁且营养丰富的作物。许多疾病会造成严重的直接损害,主要是饲料产量的降低。其中包括冠锈病、茎锈病和叶斑病等疾病。在超过 31 个野燕麦品种中,已从燕麦基因库中发现了多种抗冠锈病、秆锈病、白粉病、BYDY 等主要病害的抗性基因。人们正在广泛利用标记辅助选择 (MAS)、标记辅助回交 (MABC)、标记辅助基因聚合和标记辅助轮回选择 (MARS) 等多种育种策略将抗性基因渗入优良品种。随着新测序技术的进步和生物信息学的飞速发展,完整的燕麦基因组测序已不再遥不可及。燕麦基因组测序将为育种者开发大量基于序列的标记(如 SNP)铺平道路,这些标记将有助于通过利用连锁不平衡作图和基因组选择来识别抗病基因。
小米是具有营养丰富的谷物谷物,具有国家粮食安全的潜力。作为平衡饮食的组成部分,小米的重要性正在迅速增加。小米具有在不利的环境条件下保持耕种成本低的不利环境条件的能力。尽管健康意识者对小米的需求不断增加,但由于生产率低,农民对基于小米的增值产品缺乏意识,小米正在耕种的区域逐渐下降。小米可用作食物,饲料,饲料和生物燃料。此外,不利的环境条件和气候场景变化,强调将小米种植作为主要的谷物种植系统。印度小米的收益率和质量损失的约50%是由于发生了各种非生物应力。小米容易承受各种非生物应力,包括有限和过量的水应激,热应激以及害虫和疾病的爆发。所有这些不利因素降低了小米的生产率,并最终导致经济损失,这些损失需要立即关注科学界和政策制定者。要处理这种情况,对压力耐受机制的基本理解以及在减轻小米可持续生产的缓解和适应策略中的创新至关重要。
潜在(未来)功能是开采资源的原因。本研究试图描述有限 15 种资源的潜在功能和替代可能性。由于资源为人类提供不同的功能,因此有必要区分子影响类别。建议对影响类别进行以下区分:I 元素和配置,II 建筑和施工资源 III 能源载体子影响类别 I 包含许多具有非常不同潜在功能的不同元素和配置。要将元素和配置汇总为一个子影响分数,可以进行后续加权。建议根据元素或配置功能的当前经济价值来加权。但是,这些加权因子尚未提供。
pradhan a gaikwad bb pawar ss nangare dd chavan sb paritosh kumar salunkhe vn rajagopal v khaptal v khapte ps paul nc nc tayade饰演雷迪·塔伊德(Paul Nc Tayade)于2023年8月出版的作者在本出版物中表达的作者的观点是他们自己的,并不一定反映了组织者。©所有权利保留了非生物压力的农业研究学会,ICAR-National National National National of Biotig stress Management。
全球气候变化,包括干旱、极端气温以及盐碱化和重金属污染等不利的土壤条件,对作物的产量和品质产生了深远影响,对全球粮食安全构成了重大威胁( Waadt 等,2022 年)。为了更好地适应各种非生物胁迫,谷物作物的细胞过程和整个植物生理发生了一些根本性变化( Zhang 等,2022 年)。这些适应性反应对于增强作物抗性至关重要,对作物改良具有极其重要的意义( Gong 等,2020 年)。优良种质的鉴定、潜在机制的发现和重要抗性基因的利用对于抗非生物胁迫作物育种至关重要。高通量表型评估、全基因组关联研究、多组学分析和基因编辑等先进技术不仅加深了我们对作物应对非生物胁迫的分子机制的理解,而且加速了培育具有增强的非生物胁迫抗性的作物(Gao,2021)。尽管通过应用这些先进技术,在模式植物和非模式植物中已经报道了参与植物应对非生物胁迫的多种策略和重要基因,从而增进了我们对主要作物抗非生物胁迫机制的理解,但仍存在知识上的空白。我们设立了“作物抗非生物胁迫育种进展”研究课题,目的是弥补这些空白。本研究课题包括以下主题:(a)非生物胁迫抗性评估和优良种质资源的利用; (b) 通过遗传或基因组学方法鉴定赋予抗非生物胁迫性的基因,例如 BSA-seq、QTL 定位、GWAS 和关键基因家族的全基因组表征;(c) 利用多组学研究作物非生物胁迫的生理和分子机制
海洋生物膜是全球无处不在的表面相关微生物群落,由于其独特的结构和功能,引起了人们的关注。The aim of this study is to provide a comprehensive overview of the current scienti fi c understanding, with a speci fi c focus on naturally occurring bio fi lms that develop on diverse marine abiotic surfaces, including microplastics, sea fl oor sediments, subsurface particles, and submerged arti fi cial structures susceptible to biocorrosion and biofouling induced by marine bio fi LMS。本文介绍了有关海洋环境中这些表面相关微生物群落的多样性,结构,功能和动态的最新进展和发现,突出了它们的生态和生物地球化学维度,同时也是为了进一步研究海洋生物生物LMS的灵感。
生物膜是遵循表面的微生物群落。这些包裹在称为细胞外聚合物物质(EPS)的粘性物质中,形成了较高的多细胞结构,使微生物可以抵抗不利的环境条件,例如营养不良,干旱,极端,宿主免疫反应,以及许多其他司法干预措施(Ciofu et al.,202 al。,pai等)。生物膜上还可以在各种非生物表面上形成致病性微生物,例如在食品加工和医疗领域遇到的表面,从而使封闭的微生物持续存在,即使经过定期的清洁和消毒过程,也可能导致食物疾病的交叉抗击,又可能会造成30次疾病爆发(又有30次疾病)。作为有关食品和临床部门的非生物表面病原体生物膜的这项研究主题的编辑,我们很高兴收到和审查该领域内的一些有趣的研究文章。本社论的布里(Brie)报告了每个被接受的文章的主要发现,结论和观点。乳制品加工厂为生物膜发育提供了理想的环境,这是由于牛奶残留物富含碳水化合物,蛋白质和脂肪(Yuan等,2023)。,杆菌属。由于在耐热孢子中分化的能力,即使在巴氏杀菌后也生存(Shemesh and Ostrov,2020)。Catania等人进行的工作。因此,它们的存在对乳制品行业引起了重大关注,因为这些细菌可能会不断污染食品加工流,最终影响乳制品的安全性并导致它们的变质。证明了枯草芽孢杆菌和蜡状芽孢杆菌分离物是从加工奶酪产品中存活的热处理,很容易在常见的食物接触上形成生物膜
Miguel Hern的Innovaci,Epso,Ctra。Beniel KM 3.2,E-03312 Alicant,西班牙; zblesa@umh.es(Z..B.M。); J.S.S. (J.S。); R.M. (R.M.)<)。Box 99,E-03080 Alican,西班牙; Manuel.rodriz@u.s生命的4, 51,56126 PISA,意大利;罗马里亚。Box 99,E-03080 Alican,西班牙; Manuel.rodriz@u.s生命的4,51,56126 PISA,意大利;罗马里亚。51,56126 PISA,意大利;罗马里亚。
摘要:农作物暴露于各种非生物胁迫,例如盐度,水位,极端温度,流量,辐射和金属毒性。为了克服这些挑战,育种计划试图改善方法和技术。基因编辑经常间隔间隔短的短质体重复序列(crispr/cas)是一种多功能工具,用于在中央教条的所有层中进行编辑,重点是开发抗多种生物或非生物应力的植物品种或耐受性。这项系统评价(SR)为研究CRISPR/CAS在基因编辑中的使用带来了新的贡献,以耐受植物中非生物压力的耐受性。使用搜索字符串和预定的包含和排除标准沉积在不同电子数据库中的文章。该SR表明CRISPR/CAS系统已应用于几种植物物种,以促进对主要的非生物应力的耐受性。在研究最多的农作物中是水稻和拟南芥,这是人群中的重要主食,分别是遗传学/生物技术的模型植物,以及最近的番茄,其研究数量自2021年以来有所增加。大多数研究是在亚洲进行的,在中国特别是在亚洲进行。Cas9酶用于大多数文章中,并且仅将Cas12a用作植物中的附加基因编辑工具。核糖核蛋白(RNP)已成为无DNA的基因组编辑而无需外源性DNA的策略。该SR还确定了CRISPR/CAS编辑的几个基因,并且还表明植物对应激因素的反应是由许多复杂信号途径介导的。此外,通过偏见分析的风险来验证此SR中包含的文章质量。在此SR中收集的信息有助于了解基因和非编码序列的CRISPR/CAS的当前状态,该序列在调节各种生物学过程中起着关键作用,以及对多种非生物胁迫的耐受性,具有在植物遗传改善计划中使用的潜力。