1俄罗斯科学院普罗夫洛夫通用物理研究所,俄罗斯莫斯科119991 Vavilova St. 38; avsimakin@gmail.com(A.V.S.); Aleksej.baryshev@gmail.com(A.S.B.); pobedonoscevroman@rambler.ru(R.V.P.); inyabaymler@yandex.ru(i.v.b。); rebezov@yandex.ru(M.B.R.); rusa@kapella.gpi.ru(R.M.S.); astashev@yandex.ru(M.E.A。); dikovskayaao@gmail.com(A.O.D。); bronkos627@gmail.com(e.a.m.); v.kozlov@hotmail.com(V.A.K.); nbunkin@mail.ru(n.f.b。); iwe88@rambler.ru(v.e.i。); kuder_1996@mail.ru(k.o.a.); voronov@lst.gpi.ru(V.V.V.); shafeev@kapella.gpi.ru(G.A.S.)2俄罗斯科学院植物病理学研究所俄罗斯科学研究所,143050俄罗斯大维利齐米; cmakp@mail.ru(M.A.S.); kalinitch@mail.ru(V.P.K.)3尼兹尼·诺夫哥罗德州立大学生物学与生物医学研究所,603022尼兹尼·诺夫哥罗德,俄罗斯,俄罗斯4号州立辐射医学和保护国家关键实验室,放射学和跨学科科学学院(RAD-X)苏州215123,中国; gaomy@iccas.ac.cn(M.G.); liruibin@suda.edu.cn(r.l.)5,105005俄罗斯莫斯科7 A.A. Baikov冶金与材料科学研究所(IMET RAS),俄罗斯科学院,莱宁斯基潜在客户,49,119334,俄罗斯莫斯科; kolmakov@imet.ac.ru(A.G.K.); 79031927386@yandex.ru(M.A.K.)5俄罗斯科学院的细胞生物物理研究所,联邦研究中心,“俄罗斯科学学院的Push-Chino科学研究中心”,Institutskaya St.,3,142290 sharapov.mars@gmail.com 6鲍曼莫斯科州立技术大学基础科学系,2-ND Baumanskaya Str。8俄罗斯科学院理论与实验生物物理学研究所,俄罗斯街3号,142290,俄罗斯Pushchino; bruskov_vi@rambler.ru 9南俄罗斯土壤生育研究所,346493波斯安诺夫卡,俄罗斯10个国家纳米技术中心(Nanotec)国家科学技术发展局(NSTDA),111,111,Phahonyotin Rd,Klong Luang 12120,Thailand; nuttaporn@nanotec.or.th *通信:s_makariy@rambler.ru
政策商业成员:托管护理(HMO和POS),PPO和赔偿性医疗保险HMO Blue SM和Medicare PPO PPO蓝色SM成员Transcatheter radiofqurexcrequency(RFA)或冷冻治疗以治疗心房纤维,以治疗以下指标,以应对以下指示:对有效的型号进行拟合的指标:阵发性或有症状的持续性心房颤动,或•作为II或III类充血性心力衰竭和有症状性心房颤动的个体中心房淋巴结消融和起搏器插入的替代方案。经导管RFA或冷冻治疗心房颤动可能被认为是医学上必不可少的,是对具有复发性症状性阵发性阵发性心房颤动的患者的初始治疗方法(> 1个发作,前6个月的发作4个或更少),在其中需要进行节奏策略。最多3次重复经导管RFA或冷冻形成在患有心房颤动和/或初始程序后心房颤动的个体中被认为是医学上必不可少的。经导管RFA或冷冻治疗房颤被认为是研究性的,是对不符合上面概述的标准的房颤病例的一种治疗方法。房颤的经导管治疗可能包括肺静脉分离和/或局灶性消融。
摘要Palladin(Palld)属于肌动蛋白含有免疫球蛋白的蛋白质蛋白的Palld/Myopalladin(mypn)/肌动蛋白家族。palld普遍于几种同工型中表达,其最长的200 kDa同工型(主要在肌肉中表达)表现出与MYPN的高结构同源性。mypn基因突变与人类心肌病有关,而palld在心脏中的作用仍然未知,部分原因是palld敲除小鼠的胚胎致死性。在酵母双杂交筛查中,鲤鱼/Ankrd1和Fhod1被确定为Palld N末端区域的新型相互作用伙伴。为了研究palld在心脏中的作用,我们产生了条件(CPKO)和诱导(CPKOI)心肌细胞 - 特异性PALLD敲除小鼠。虽然CPKO小鼠没有病理表型,但成年CPKOI小鼠的PALD消融引起了进行性心脏扩张和收缩功能障碍,与心肌细胞收缩率降低相关,椎间盘降低的椎间盘异常和纤维化,纤维化,纤维化,demon-palld对于正常心脏的心脏症必不可少。双CPKO和MYPN敲除(MKO)小鼠表现出与MKO小鼠相似的表型,这表明MYPN并不构成CPKO小鼠中PALLD的损失。在人体膨胀和缺血性心肌病患者的心肌组织中发现了MYPN和PALLD同工型的转录水平改变,而其蛋白质表达水平未经改变。
背景:尽管最近利用 CHO 细胞生产重组生物治疗药物取得了进展,但其生产率仍低于工业需求,主要是由于细胞凋亡。目的:本研究旨在利用 CRISPR/Cas9 技术特异性破坏 BAX 基因,以减轻产生促红细胞生成素的重组中国仓鼠卵巢细胞的细胞凋亡。材料和方法:使用 STRING 数据库识别要通过 CRISPR/Cas9 技术修饰的关键促凋亡基因。设计针对已识别基因 (BAX) 的单向导 RNA (sgRNA),然后用载体转染 CHO 细胞。随后,研究了操纵细胞中 Bax 基因表达的变化以及随之而来的促红细胞生成素产生率,即使在存在凋亡诱导剂橄榄苦苷的情况下也是如此。结果:BAX 破坏显著延长了细胞存活率,并增加了操纵克隆的增殖率(152%,P 值 = 0.0002)。该策略将操纵细胞中的 Bax 蛋白表达水平降低了 4.3 倍以上(P 值 <0.0001)。与对照组相比,Bax-8 操纵细胞对压力和结果凋亡表现出更高的阈值耐受性。此外,在橄榄苦苷存在的情况下,它们与对照组相比表现出更高的 IC50(5095 µM.ml -1 Vs. 2505 µM.ml -1 )。我们发现,与对照细胞系相比,即使存在 1,000 µM 橄榄苦苷,操纵细胞中的重组蛋白生产水平也显著增加(p 值 = 0.0002)。结论:CRISPR/Cas9 辅助 BAX 基因消融有望通过工程化抗凋亡基因来改善 CHO 细胞中的促红细胞生成素产生。因此,有人提出利用 CRISPR/Cas9 等基因组编辑工具来开发宿主细胞,从而实现安全、可行、稳健的制造操作,且产量满足工业要求。
可解释的人工智能 (XAI) 方法缺乏基本事实。取而代之的是,方法开发人员依靠公理来确定其解释行为的理想属性。对于需要可解释性的高风险机器学习用途,仅仅依靠公理是不够的,因为实现或其使用可能无法达到理想状态。因此,目前存在对验证 XAI 方法性能的积极研究。在依赖 XAI 的领域,验证的需求尤其突出。一种经常用于评估其效用(在某种程度上是其保真度)的程序是消融研究。通过按重要性排序扰动输入变量,目标是评估模型性能的敏感性。扰动重要的
患者 我们医院的机构伦理委员会批准了这项研究。所有参与研究的个人都获得了知情同意。我们联系了 2012 年 10 月至 2021 年 2 月期间在我们诊所就诊的出现骶骨转移和剧烈疼痛的连续患者参加这项研究。那些表示愿意参加的患者被分配接受 PSP 加 RFA 或单独接受 PSP 治疗。纳入标准如下:1)年龄超过 18 岁;2)骶骨转移伴有剧烈疼痛且无法行走或坐下;3)转移灶直径为 #3 厘米;4)常规治疗(阿片类药物、放射疗法和化学疗法)没有缓解;5)由于体能状态不佳而不愿意接受或不适合手术治疗;6)预期寿命 #3 个月;7)愿意提供签署的同意书。排除标准为:1)神经孔侵蚀或硬膜外肿瘤;2)全身感染;3)无法纠正的凝血功能障碍(国际标准化比值>1.50,血小板计数>90×10 9 /L);4)对聚甲基丙烯酸甲酯(PMMA)过敏;5)并发严重心肺疾病。2017年之前,这些患者仅行PSP。2018年起,随着射频设备的引进,我们采用PSP和RFA相结合的方式治疗这些患者。126名符合纳入标准的患者中,51名接受PSP加RFA治疗(A组),75名接受单纯PSP治疗(B组)。我院伦理委员会批准了本研究,并获得了所有参与者的知情同意。
1 德国柏林夏里特医学院和马克斯德尔布吕克分子医学中心实验与临床研究中心,邮编 13125; elisa.ciraolo@charite.de(欧盟); stefanie.althoff@charite.de (SA); josefine.russ@bih-charite.de(JR); monique.butze@charite.de (MB); miriam.puehl@charite.de(国会议员); lars.bullinger@charite.de (LB) 2 柏林夏里特医学院血液学、肿瘤学和肿瘤免疫学系,柏林自由大学、柏林洪堡大学和柏林健康研究所的企业成员,德国柏林 10117; stanislav.rosnev@charite.de (SR); marco.frentsch@bih-charite.de (MF) 3 柏林夏洛特大学再生疗法健康中心研究所,柏林 13353,德国 4 德国癌症联盟 (DKTK),柏林 10117,德国 * 通信地址:il-kang.na@bih-charite.de † 这些作者对这项工作做出了同等贡献。
程序性死亡-1 同源物 (PD-1H) 是一种共抑制分子,可负向调节 T 细胞介导的免疫反应。在本研究中,我们确定了 T 细胞相关 PD-1H 的消融是否可以增强实验性肿瘤模型中的过继性 T 细胞疗法。PD-1H 的表达在活化和肿瘤浸润性 CD8 + T 细胞中上调。PD-1H 缺陷 (PD-1H-KO) 小鼠的活化 CD8 + T 细胞在体外表现出细胞增殖、细胞因子产生和抗肿瘤活性增加。PD-1H-KO CD8 + T 细胞的过继转移导致已建立的同源小鼠肿瘤消退。当通过 CRISPR/Cas9 介导的基因沉默在 T 细胞中消融 PD-1H 时获得了类似的结果。此外,CAR-T 细胞中 PD-1H 的消融显著提高了其对体内人类异种移植物的抗肿瘤活性。我们的结果表明,T 细胞相关的 PD-1H 可以抑制肿瘤微环境中的免疫力,并且针对 PD-1H 可能会改善 T 细胞过继免疫疗法。
a 意大利比萨皮萨格里德.5395.a 大学医学和外科转化研究和新技术系病毒学科逆转录病毒中心 b 英国剑桥大学网格.5335.0 兽医学系病毒性人畜共患疾病实验室 c 意大利瓦雷泽伊苏布里亚大学医学和外科系 d 意大利比萨比萨大学医院病毒学科 e 意大利罗马国立卫生研究所 f 意大利比萨皮萨格里德.5395.a 大学临床和实验医学系药理学科 g 意大利比萨皮萨格里德.5395.a 大学临床和实验医学系血液学科 h 意大利罗马罗马第一大学网格.7841.a 分子医学系病毒学实验室 i 罗马第一大学分子医学系巴斯德研究所-Cenci Bolognetti 基金会Romegrid.7841.a,罗马,意大利