Instituto de Acústica, CSIC。Serrano 144, 28006 Madrid (西班牙), iacpc24@ia.cetef.csic.es 摘要:由于尺寸与波长之比的限制,被动系统本质上无法在低频范围内提供吸收。另一方面,主动控制系统在低频下工作。然后可以设想一种混合被动-主动系统,它通过主动控制补充被动吸收器的低频范围。如果配置正确,这种混合系统能够提供宽带吸收。1.简介 主动控制系统可以与传统被动元件相结合,以提供宽带吸收,包括低频 [1-2]。被动吸收器可以由气腔前面的多孔层和不透水端壁组成。主动系统包括误差传感器、执行器和自适应控制器。如果误差传感器是被动层后面的麦克风,则主动系统会在气腔输入处释放压力 [3]。这通过压力释放提供主动控制器。另一方面,如果在气腔中有两个麦克风和一个反卷积电路,则可以分别测量入射和反射分量。取消气腔中反射分量的主动系统称为阻抗匹配器 [4]。主动系统的性能取决于被动元件的设计。Cobo 等人[5-6] 表明,当被动元件的阻抗减小时,阻抗匹配条件的主动吸收效果更佳。否则,只要被动元件设计得当,压力释放条件的效果会更好。因此,在实施混合被动-主动吸收系统之前,有必要通过适当的模型预测其性能。本文讨论了压力释放条件下的混合被动-主动吸收系统的理论建模和实验验证。被动元件可以是多孔层或微穿孔板 (MPP)。2.平面波混合吸收模型让我们考虑一个管道,其中平面波向下和向上传播。左侧某处的主要源在每一层产生入射平面波 A i 和反射平面波 B i ,如图 1 所示。管道另一侧的被动吸收器可以是多孔层,其声阻抗为 Z a ,传播常数为 Γ a ,厚度为 d ,也可以是 MPP ,其
质谱成像 (MSI) 正在成为一种强大的分析工具,可通过对薄组织切片进行原位质谱分析,对内源性和外源性分子进行检测、量化和同时进行空间分子成像,而无需化学标记。MSI 可生成所施用药物和代谢物的化学特异性和空间分辨的离子分布信息,这可用于涉及药物吸收、分布、代谢、排泄和毒性 (ADMET) 各个阶段的研究的众多应用。基于 MSI 的药代动力学成像分析提供了有关动态药物分布和代谢过程的组织学背景和细胞环境,并有助于了解药物的空间药代动力学和药效学特性。在此,我们讨论了 MSI 的当前技术发展,这些技术可提供临床前和临床组织标本中小分子药物、抗体和寡核苷酸大分子药物及其代谢物的定性、定量和空间位置信息。我们重点介绍全身、脑、肺、肝、肾、胃、肠组织切片、类器官中的宏观和微观药物分布,以及 MSI 在药物 ADMET 研究中的最新应用。
自 20 世纪 80 年代以来,可调谐半导体激光光谱仪一直是 NASA 地球科学的重要组成部分 1 。早期的高空飞机光谱仪使用低温冷却铅盐激光器来测量万亿分之一级别的化学物质,从而有助于了解关键的地球系统。随着可调谐激光器逐渐成熟并可在室温条件下运行,可调谐激光光谱仪的同步小型化使得它们可以集成到 NASA 行星科学平台中,例如火星好奇号探测器上的可调谐激光光谱仪,以了解火星上的地球化学过程和可能的生命特征 2 。NASA 还投资了可调谐激光光谱仪演示,以监测对国际空间站上载人航天至关重要的气体 3 。LAMS 是第一个用于大气监测和载人航天环境中环境控制与生命支持系统 (ECLSS) 硬件反馈控制的可调谐激光光谱仪系统。有关这一目标的动机和之前 TLAS 的开发将在其他地方描述 4 。
相比之下,CPA的量子状态(稀薄的吸收剂都被量子光相干地照亮)缺乏这种解释的清晰度。CPA过程的结果在很大程度上取决于光的量子状态。例如,单个光子状态的总吸收和总传播状态之间的“经典”调制[10,11],而概率零或两光子吸收可能发生在两个光子状态[12-14] [12-14]。开发了量子光的CPA的理论模型[15-17]描述了量化行进波的问题,图。1(a),其中未考虑吸收剂的亚波长厚度。此外,根据所考虑的量子状态,需要进行骨气[15]或fermionic [13]第二量化形式主义。尽管缺乏对基本过程的清晰图片,但CPA的量子制度对于量子光学和量子信息的应用还是很大的兴趣。CPA为量子状态控制提供了一种强大的方法,包括量子状态过滤[16-18]和操纵量子光相关性[12-15,19]。最近,提出了量子光的分布式CPA的机理,以确定多节点量子网络中的纠缠确定性生成[20]。从基本的角度来看,CPA的量子状态提供了有关量子光吸收过程的新见解,包括局部[10,11,21]和非本地[22]光子吸收控制,概率两光子和确定性的一种光子吸收两个光子状态[12,13] [12,13]。该研究领域的进一步发展需要清楚地解释CPA的量子效应。
检测比MEV更重的轴线暗物质受到其小波长的阻碍,这限制了传统实验的有用体积。可以通过直接检测中等激发来避免此问题,后者的〜MEV - EV能量与检测器的大小是解耦的。我们表明,对于磁场内的任何目标,电磁轴轴的吸收率由介电函数确定。结果,可以将以前用于子GEV暗物质搜索的候选目标重新定义为宽带轴测检测器。我们发现,具有与最近测量值相当的噪声水平的kg yr暴露足以探测实验室测试目前未探索的参数空间。降低噪声仅减少几个数量级,才能对〜10 MeV - 10 eV质量范围内的QCD轴敏感。
时间不变的光子结构根据其内在的材料增益或损失来扩增或吸收光。可以利用多个光束在空间中的连贯干扰,例如,在谐振器中,可以分别使用材料增益或损失来定制波浪相互作用,从而最大程度地提高激光或相干的完美吸收。相比之下,即使在没有物质增益或损失的情况下,时间变化的系统也不受限制地节省能量,并且可以通过参数现象支持放大或吸收探针波。在这里,我们在理论上和实验上演示了如何通过光学泵送进行批量介电常数的亚波长膜(其批量介电常数均质和定期调节),可以通过操纵两种探测器的相对相对相对相对的相对相对的相对相对,从而动态地调节其作为非呼吸器的放大器和完美的吸收仪的作用。这将一致的完美吸收的概念扩展到了时间领域。我们将此结果解释为在定期调制介质的动量带隙中存在的增益和损耗模式之间的选择性切换。通过调整两个探针的相对强度,可以通过高达80%的吸收和400%的扩增来实现高对比度调制。我们的结果表明,在光学频率下对时变介质的增益和损失的控制,并为在Floquet工程化的复杂光子系统中相干操纵光的操纵铺平了道路。
操作简单、可靠 — 16TJ 冷水机组的单个发生器提供一个溶液再浓缩阶段,这使 16TJ 冷水机组成为目前最基本的循环之一。16TJ 冷水机组的简单设计,加上其他质量特性,意味着固有的高可靠性。移动部件少、操作简单、可靠,可减少停机时间以及服务和维护成本。卓越的效率 — 16TJ 冷水机组在标准 ARI(空调和制冷研究所)操作条件下提供 17.2 磅/小时-吨的满载蒸汽速率,并在效率方面引领单效冷水机组市场。标准机器设计中包括一个溶液热交换器,用于通过预冷来自发电机的浓溶液来预热泵入发电机的稀溴化锂溶液,以及第二个热交换器,用于通过回收蒸汽冷凝水中的额外热量来进一步预热稀溶液,从而进一步提高循环效率。卓越的部分负荷性能 — 16TJ 冷却器的浓度控制系统允许在冷却水温度低至 64 F 时稳定地进行部分负荷运行,而无需冷却塔旁路。机器中集成的控制阀可确保制冷剂泵在部分负荷条件下稳定、连续地运行。16TJ 冷却器的连续运行范围为额定机器容量的 100% 至 10%。
1. 简介 氨因其高能量密度和碳中性而被视为未来有前途的绿色能源。然而,最大的挑战仍然是从丰富但间歇性的可再生能源中更有效地生产氨。1 在传统的氨合成中,氨通过冷凝器分离,这是能源密集型的。7 因此,改善氨合成的一个重要方面是在循环之前用固体吸收剂有效地分离氨。最近,已经提出了几种材料作为氨分离的固体介质,其中金属卤化物似乎是最可行的选择,通过协同吸收氨。12 在本文中,研究了块状氯化镁以及负载在多孔载体上的氯化镁的氨容量。
瑞士的能源领域正在经历重大变革,这是由当地和全球经济、技术和政治的变化引起的。这种变化在冬季寒冷的地区尤为明显,因为这些地区的能源需求会因供暖需求而达到峰值。太阳能等可再生能源不足以满足这种高需求,这引起了人们对创新高效的季节性能源储存解决方案的需求。吸附热储存是一种很有前途的解决方案。这种方法在 EMPA 和 HSLU 进行了广泛的研究,它使用氢氧化钠来创建紧凑而高效的系统,不会随着时间的推移而损失能量,作为化学驱动的热泵运行,在夏季充电,在冬季释放热量,同时将电力消耗降至最低。然而,这一研究领域存在一个明显的差距:需要一种可靠的方法来评估系统在更广泛的能源系统中的性能。