在这项工作中,我们提出了一种新颖的歧视性框架,用于灵巧的掌握生成,称为d外部g rasp tr ansformer(dgtr),能够通过仅使用一个向前的通行方式处理对象点云来预测一组可行的抓握姿势。我们将敏捷的掌握生成作为设定的预测任务,并为其设计一个基于变压器的握把模型。但是,我们确定此设置的预测范式在灵活的掌握领域遇到了几种优化的挑战,并导致限制性能。为了解决这些问题,我们提出了培训和测试阶段的渐进策略。首先,提出了动态静态匹配训练(DSMT)策略,以增强训练阶段的光学稳定性。第二,我们使用一对对抗性损失来实现对抗平衡的测试时间适应(ABTTA),以提高测试阶段的掌握质量。dexgraspnet数据集的实验结果证明了DGTR可以预测具有高质量和多样性的灵活掌握姿势的能力。值得注意的是,在保持质量高的同时,DGTR Sigsigs所预测的Grasp的多样性明显优于先前的多个指标,而没有任何数据预处理。代码可在https://github.com/isee-laboratory/dgtr上找到。
在大规模数据集训练的生成模型的最新进展使得可以合成各个领域的高质量样本。此外,强烈反转网络的出现不仅可以重建现实世界图像,还可以通过各种编辑方法对属性进行修改。,在与隐私问题有关的某些领域中,例如Human Faces,先进的生成模型以及强大的反转方法可能会导致潜在的滥用。在此过程中,我们提出了一个必不可少但探索的任务不足的任务,称为生成身份,该任务引导该模型不要生成特定身份的图像。在未经学习的生成身份中,我们针对以下内容:(i)防止具有固有身份的图像的产生,以及(ii)保留生成模型的整体质量。为了满足这些目标,我们提出了一个新颖的框架,对任何IDE NTITY(指南)进行了努力,该框架通过仅使用单个图像来删除发电机来阻止特定身份的重建。指南由两个部分组成:(i)找到一个优化的目标点,该目标点未识别源潜在代码和(ii)促进学习过程的新型损失函数,同时影响较小的学习分布。我们的广泛实验表明,我们提出的方法在通用机器学习任务中实现了最先进的性能。该代码可在https://github.com/khu-agi/guide上找到。
虽然行为克隆最近已成为自主驾驶的非常成功的范式,但Humans很少学会通过单独的模仿或行为克隆来执行复杂的任务,例如驱动或行为。相比之下,人类的学习通常涉及在整个交互式学习过程中的其他详细指导,即通常通过语言的反馈提供详细的信息,以详细信息,以进行审判的哪一部分进行,不正确或次要地进行。以这种观察的启发,我们引入了一个有效的基于反馈的框架,用于改善基于行为克隆的传感驱动剂培训。我们的关键见解是利用大语模型(LLM)的重新进步,以提供有关驾驶预测失败背后的理由的纠正良好的反馈。更重要的是,我们引入的网络体系结构是有效的,是第一个基于LLM的驾驶模型的第一个感觉运动端到端培训和评估。最终的代理在Nuscenes上的开环评估中实现了最新的性能,在准确性和碰撞率上的表现优于先前的最新时间超过8.1%和57.1%。在卡拉(Carla)中,我们的基于相机的代理在以前的基于激光雷达的AP摄入率上提高了16.6%的驾驶得分。
转导的推论已通过几片图像分类进行了广泛研究,但在最近的,快速增长的文献中,有关适应视觉模型(如剪辑)的文献被完全忽略了。本文介绍了转换零射击和少量剪辑的分类,其中在其中共同进行推理,在一批无标记的查询样品中共同执行,而不是独立处理每个实例。我们最初构建了信息性的文本概率特征,从而在单元单元集中导致分类问题。受期望最大化(EM)的启发,我们基于优化的分类目标使用Dirichlet定律对每个类别的数据概率分布进行模型。然后使用一种新颖的块最小化最小化算法来解决最小化问题,该算法同时估计分布参数和类分配。在11个数据集上进行的广泛的Numerical实验强调了我们批处理推理方法的效果和效率。在带有75个样本的测试批次的零摄像任务上,我们的APARCH产量比Clip的零弹性性能提高了20%的ImageNet准确性。此外,我们在几次设置中胜过最先进的方法。代码可在以下网址提供:https://github.com/ segolenemartin/trandductive-clip。
通过电子邮件通知将文件添加到 eOPF。当文件添加到员工的 eOPF 时,员工将收到电子邮件通知。如果您有政府电子邮件地址,则该地址已在您的 eOPF 记录中更新。没有政府电子邮件地址的员工可以联系其服务 CPAC 或 NAF HRO,以提供个人电子邮件地址,以便通知。
几何模型拟合是一个具有挑战性但又十分基础的计算机视觉问题。最近,量子优化已被证明可以增强单模型情况的稳健拟合,同时多模型拟合的问题仍未得到解决。为了应对这一挑战,本文表明后一种情况可以从量子硬件中显著受益,并提出了第一种多模型拟合 (MMF) 的量子方法。我们将 MMF 表述为一个问题,现代绝热量子计算机可以对其进行有效采样,而无需放宽目标函数。我们还提出了一种迭代和分解版本的方法,该方法支持真实世界大小的问题。实验评估在各种数据集上都显示出有希望的结果。源代码可在以下位置获得:https://github.com/FarinaMatteo/qmmf 。
2018 年 2 月 1 日 — ... 采购审查季刊 (ARG)。第 7 卷,第 3 期。ADA381968 ...数字化主计划。ADA308047。陆军部。
残疾人经常面临独特的挑战,即获得现有的运输方式和基础设施方式。自动驾驶汽车(AVS)具有巨大的潜力,可以满足美国人未满足的流动需求。对于残疾人,AVS将提供新的出行选择和独立性,这尤其如此。但是,AVS并不整齐地适合驾驶员和乘客的传统法律结构,并且要求社区开始以不同的方式思考基础设施。《自动驾驶汽车可访问性法》将帮助残疾人更好地获得骑行骑行的行动性和独立性好处。
Cigna+ Oscar 保险由 Cigna Health and Life Insurance Company 承保。加州:福利由 Oscar Health Administrators 管理。其他州:福利由 Oscar Management Corporat ion 管理。药房福利由 Express Script s, Inc. 提供。Cigna + Oscar 健康保险包含除外责任和限制条款。如需了解产品可用性和承保范围的完整详情,请参阅您的计划文件或联系代表。 (1) 本计划可能使用分阶式急诊室承保,首次就诊后,您将承担更高比例的费用。 (2) 3 美元处方药清单在所有市场均有提供,加利福尼亚州除外。请参阅注册材料了解详情。对于常见的承保药物,请查看处方药清单。 (3) Cigna 的内部数据 10/ 22。可能会更改。 (4) 如果您不在家,虚拟紧急护理服务在国际上不可用。虚拟紧急护理服务对 HSA 计划的会员在达到自付额之前有费用分摊,超过自付额后共付额为 0 美元。会员只能通过电话访问虚拟紧急护理服务。这适用于 2022 年 1 月 1 日起生效的新团体以及 2022 年团体续约时。作为您计划的一部分,Cigna 通过国家远程医疗提供商提供虚拟护理服务。此服务与您的健康计划网络是分开的,并且可能并非在所有地区都可用。* 为了遵守联邦法律,如果符合条件的员工由于残疾或其他原因而无法参加任何激励计划活动、活动或目标,他们可能会获得合理的参与安排,或获得奖励的替代标准。
交叉空间是一种公共资源,必须在车辆之间有效地共享,这些轨迹与几条公路车道相互矛盾。交通信号灯控制(TLC)策略的主要目标是通过允许车辆依次允许车辆,同步或同步进行车道之间的交叉点访问。在这项工作中,我们比较了交叉路口的道路网络中五种最先进的TLC方法的性能。其中,三种方法一次从一个道路车道依次使用车辆,一种方法允许车辆从对面的车道相称,最后一种方法使车辆同步车辆从所有非冲突的道路车道通往交叉路口,每道道路车道一辆车道。SUMO仿真结果表明,在网络吞吐量,旅行时间损耗和相关的燃油消耗方面,同步方法在多种情况下的顺序和平行方法的表现优于顺序和平行方法。