对于鉴定生物化学过程和活细胞中生物学规范至关重要的主要营养素是蛋白质。蛋白质通常围绕由其家庭类型定义的一个或几个功能。因此,需要识别和分类来根据其结构和家庭分离蛋白质。在这项工作中,我们建立了一个模型来对蛋白质序列的家庭进行分类。我们使用的蛋白质序列数据集由各种生物学意义的大分子组成。分类器是使用BI-LSTM深入学习的。我们通过从结构生物信息学研究合作社的蛋白质数据库中收集数据集,使用令牌化对数据进行预处理,并基于BI-LSTM的深度学习网络对分类器进行建模。由于我们获得了受过训练的模型的最佳准确率,因此我们使用学习曲线,准确率和损失的评估指标来找出模型性能。结果表明,Deep Bi-LSTM具有拟合学习曲线,99%的精度率和0.042损失的出色性能。
协变性转移是一种常见的实践现象,可以显着降低模型的准确性和公平性能。在协变量转变下确保不同敏感群体的公平性至关重要,因为诸如刑事司法等社会意义。我们在无监督的制度中运行,其中只有一组未标记的测试样本以及标记的训练集。在这种高度挑战但现实的情景下提高公平性,我们做出了三项贡献。首先是一个基于新型的复合加权熵的目标,以实现预测准确性,并通过代表匹配的损失进行了优化。我们通过实验验证,在帕累托意义上,相对于几个标准数据集的公平性 - 准确性权衡,在帕累托意义上,使用损失配方优化优于最先进的基线。我们的第二个贡献是一个新的环境,我们称之为不对称的协变量转变,据我们所知,以前尚未研究过。与其他组相比,当一个组的协变量显着转移时,发生不对称的协变量转移发生时,当一个主体群体过分代表时,就会发生这种情况。虽然这种设置对当前基线非常挑战,但我们表明我们提出的方法显着胜过它们。我们的第三个贡献是理论,我们表明我们的加权熵项以及训练集的预测损失近似于协变量下的测试损失。通过经验和正式的复杂性界限,我们表明,与看不见的测试损失的近似不取决于影响许多其他基线的重要性采样方差。
基因型插补是遗传学领域中使用的标准方法。它可用于填充缺失的基因型或增加基因型密度。下游分析需要精确的估算基因型。在这项研究中,使用两种不同的参考面板,一个内部的参考人群和多种繁殖参考人群来检查全基因组序列插定的精确性。通过将介质密度(50K)基因型归纳为高密度,然后归因于整个基因组序列(WGS)来进行逐步插补。参考人群由1000个公牛基因组项目的WGS信息组成。繁殖参考面板包含396个Angus牛,而多品种参考方案的参考人群则将另外2 380个牛磺酸牛添加到参考人群中。插补精度是从10倍交叉验证的变异平均精度,并表示为一致率(CR)和Pearson的相关性(PR)。这两个插补场景实现了CR的中度至高插补精度,CR为0.896至0.966,而PR的准确精度为0.779至0.834。来自两个不同场景的准确性相似,除了WGS归因的PR,在该场景中,繁殖场景的表现优于多种品种方案。结果表明,包括参考面板中其他品种的大量动物以纯化的安格斯没有提高准确性,并可能对结果产生负面影响。2024作者。由Elsevier B.V.代表动物财团出版。总而言之,可以使用繁殖参考面板以很高的精度获得Angus牛中的WGS。这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
人工智能方法正在不断进步,在游戏相关任务(例如国际象棋)上超越人类。下一阶段预计将是人机协作;然而,关于这一主题的研究好坏参半,需要更多的数据点。我们通过研究人机协作在常见的管理教育任务上的表现,为这一新兴文献增添了新内容。教育是与人工智能相关的一个特殊领域,在实践中采用人工智能方法的速度很慢,因为担心教育事业失去人文关怀,而且由于对个人职业和发展轨迹的影响,对质量标准提出了要求。在这项研究(N = 22)中,我们设计了一个实验来探索人机协作对使用美国共同核心分类法中的技能标记教育内容任务的影响。我们的结果表明,与未使用 AI 的对照组相比,实验组(使用 AI 建议)在执行标记任务时节省了大约 50% 的时间(p << 0.01),但牺牲了 7.7% 的召回率(p = 0.267)和 35% 的准确率(p= 0.1170),AI+人类组介于单独使用 AI(性能最低)和单独使用人类(性能最高)之间。我们进一步分析了这项 AI 协作实验的日志数据,以探索在什么情况下人类在接受建议时仍会行使他们的辨别力。最后,我们概述了这项研究如何帮助在教育领域实施 ChatGPT 等 AI 工具。
摘要:对象检测是计算机视觉系统中的一项重要任务,包括多种应用程序,包括但不限于自动驾驶汽车导航和监视。尽管在诸如Yolo之类的对象检测模型中取得了很大的进步,但假阳性检测的问题仍然是一个令人担忧的问题,从而导致错误分类并降低这些系统的可靠性。这项研究努力提出一种创新方法,旨在通过将变量自动编码器(VAE)作为Yolo框架中的过滤机制来提高对象检测精度。这种整合旨在纠正假阳性检测的问题,最终促进了明显的检测精度增强,并增强了对象检测系统的整体可靠性。
脑瘤是世界上最致命的疾病之一。这种疾病可以攻击任何人,无论性别或特定年龄段。脑瘤的诊断是通过手动识别计算机断层扫描或磁共振成像的图像进行的,因此可能会发生诊断错误。此外,可以使用活检技术进行诊断。这种技术非常准确,但需要很长时间,大约 10 到 15 天,并且需要大量设备和医务人员。基于此,需要能够根据 MRI 生成的图像进行分类的机器学习技术。这项研究旨在提高以前研究对脑瘤分类的准确性,从而避免在脑瘤诊断中出现错误。本研究使用的方法是使用 AlexNet 和 Google Net 架构的卷积神经网络。这项研究的结果显示,AlexNet 架构的准确率为 98%,GoogleNet 的准确率为 96%。与以前的研究相比,这个结果更高。这一发现可以减少模型训练期间的计算负担。该研究成果可以帮助医生快速准确地诊断脑肿瘤。
摘要探讨了人类思想和认知心理学的状态,模式识别是我们表现出色的技能。新皮层是仅在哺乳动物中发现的大脑的最外部部分,是造成这种能力的原因。随着高级神经网络的发展,人类可以更好地处理视觉和听觉模式。能够寻找模式通常被认为是我们认为是卓越模式处理(SPP)的一部分。随着我们的发展,我们的能力变得越来越复杂,从而创造了人工智能。人工智能席卷了世界,是创造和认可的很大一部分。AI对于标准模式识别任务而言是值得注意的,因为它具有大量数据和数据驱动的机器学习的进步。但是,AI内部存在很大的差距,可以克服其达到人类水平的技能处理能力。这创建了一个问题,即我们如何通过将认知心理学原理应用于AI并推进模式处理系统以及是否可能建立跨越差距的桥梁。如果可能的话,它可以提高医疗保健中AI诊断能力的准确性和精度吗?
量子计量学允许在最佳的海森堡极限下测量量子系统的性能。但是,当使用数字汉密尔顿模拟制备相关的量子状态时,应计算的错误错误将导致与此基本限制的偏差。在这项工作中,我们展示了如何通过使用标准多项式插值技术来减轻由于时间演化而引起的算法错误。我们的方法是推断到零小猪的步长大小,类似于用于减轻硬件错误的零噪声外推技术。我们对插值方法进行了严格的误差分析,用于估计特征值和随时间推动的期望值,并证明在误差中达到了heisenberg的限制,以达到多种类因素。我们的工作表明,仅使用Trotter和经典资源来实现许多相关算法任务,可以实现接近最先进模拟的精度。
不受 FDA 监管的总结 总结临床数据的大型语言模型代表了一个广泛的类别。临床上已经可用的较简单的临床文档工具可以根据音频记录的患者会诊情况创建 LLM 生成的摘要。更复杂的决策支持 LLM 正在开发中,可以总结整个电子健康记录 (EHR) 中的患者信息。例如,LLM 可以总结患者最近的就诊记录和实验室结果,以在预约之前创建最新的临床“快照”。他们可以将许多冗长的放射学报告压缩为一个易于审查的段落。或者 LLM 可以描述患者在过去一年中接触的所有抗生素。当前的 EHR 是为文档和计费而构建的,信息访问效率低下,内容冗长,需要剪切和粘贴。这种糟糕的设计会导致医生倦怠和临床错误。 1 如果实施得当,LLM 生成的摘要将带来显著优势,并最终取代许多点击式 EHR 交互。然而,这也有可能对患者造成伤害,因为执行摘要的 LLM 不太可能受到 FDA 医疗器械监管,并且可能在没有安全和功效保障的情况下进入诊所。事实上,FDA 临床决策支持软件的最终指南——在 ChatGPT 发布前 2 个月发布——为 LLM 如何避免 FDA 监管提供了无意的“路线图”。2 即使是执行复杂摘要任务的 LLM 也不会明确符合设备条件,因为它们提供的是基于语言的一般输出,而不是疾病的特定预测或数字估计。通过仔细实施,我们预计许多总结临床数据的 LLM 可以满足设备豁免标准。2
2022 年 2 月,俄罗斯全面入侵乌克兰,导致近 800 万人逃离该国,500 多万人在国内流离失所,并造成灾难性的生命和生计损失。作为回应,国会颁布了四项紧急补充资金措施,以应对俄罗斯入侵造成的危机。这些措施包括向乌克兰政府 (GoU) 提供约 229 亿美元的直接预算支持 (DBS),为其提供确保业务连续性和基本服务交付所需的流动性。1 迄今为止,美国国际开发署已通过三个世界银行信托基金承诺提供全部 229 亿美元:乌克兰经济紧急复苏融资多捐助方信托基金 (FREE MDTF)、行政能力持久性公共支出 MDTF (PEACE MDTF) 和单一捐助方信托基金 (SDTF)。