摘要我们使用图形卷积神经网络(GCNN)来快速准确地预测固体溶液二元合金的总能量。gcnns允许我们抽象固体物质的晶格结构作为图,从而将原子建模为节点和金属键作为边缘。此表示自然结合了有关材料结构的信息,从而消除了对标准神经网络(NN)方法所需的计算昂贵数据预处理的需求。我们在Ab-Initio密度功能理论(DFT)上训练GCNN,用于铜金(CuAU)和铁铂(FEPT)数据,这些数据是通过运行LSMS-3代码而生成的,该数据实现了OLCF SuperCutisters titan and Immit的LSMS-3代码,该代码实现了本地自称的多重散射方法。gcnn在计算时间方面,按数量级胜过Ab-Initio dft模拟,以产生给定的原子结构的总能量的估计。我们通过使用根平方的误差来量化深度学习(DL)模型的预测质量,将GCNN模型与标准NN的预测性能进行比较。我们发现,GCNN的可达到的准确性至少比MLP的数量级好。
简介 [1] 图的 T 下标可以通过使用不同翻转角和/或重复时间 (TR) 获取的损坏梯度回忆回波 (SPGR) 图像计算得出。信号强度与翻转角和 TR 之间的关联函数是非线性的,但目前广泛使用的是 Gupta 于 1977 年 [1] 提出的线性形式 [1-6]。利用该线性模型,可以用线性最小二乘 (LLS) 法估计 [1] 的 T 下标,该方法具有计算效率高的优点。然而,我们的初步研究发现,使用这种 LLS 方法估计的 [1] 的 T 下标普遍存在偏差且被高估 [7]。我们提出了一种新的加权线性最小二乘 (WLLS) 方法,该方法在拟合中使用调整后的不确定性。所提出的 WLLS 方法用不确定性对每个数据点进行加权,该不确定性可校正由非线性模型转换为线性模型产生的噪声贡献。使用数值和人脑数据模拟来比较使用 LLS、WLLS 和非线性最小二乘 (NLS) 方法估计的 [1] 的 T 下标的准确性。
系统神经科学通常依赖于使用植入的装置和病毒注射来刺激和记录解剖学或遗传定义的神经元种群。要正确解释所得数据,至关重要的是映射植入设备或注射的位置,以及在常见的解剖坐标系统中由多个动物产生的池。显微镜和组织清除方面的最新发展允许对完整啮齿动物大脑的全自动,高分辨率成像1。存在许多将这些3D全脑显微镜数据集注册到地图集的方法,但是这些方法通常不灵活,耗时,需要相当大的计算技能2。另外,一旦注册,就没有开源的,用户友好的工具来分割和分析这些图像中任何类型的结构。在这里,我们已经开发了脑部和脑部段,这是两个用户友好的工具,可在几分钟内用于注册和细分全脑显微镜数据集。
表S2:从209个RDKIT描述符中选择功能选择,用于预测聚合物的光节间隙以及XGBoost模型的性能指标,该模型的性能指标训练了具有成对Pearson相关系数(P对)的不同组合的descriptors(P对)的组合,并且与光带差距有关(P GAP)(P GAP)。粗体表示P对和P间隙值的最佳组合。RMSE和MAE以EV测量。
从时间分辨的医学图像中精确重建右心几何形状和运动可增强基于图像可视化的诊断工具以及通过计算方法进行的心脏血液动力学分析。由于右心形态和运动的特殊性,常用的分割和/或重建技术仅采用短轴电影 MRI,在右心相关区域(如心室底部和流出道)缺乏准确性。此外,重建过程非常耗时,并且在生成计算域的情况下需要大量的人工干预。本文提出了一种从时间分辨 MRI 中精确高效地重建右心几何形状和运动的新方法。具体而言,所提出的方法利用表面变形来合并来自多系列电影 MRI(如短/长轴和 2/3/4 腔采集)的信息并重建重要的心脏特征。它还通过利用合适的图像配准技术自动提供完整的心脏收缩和放松运动。该方法既适用于健康病例,也适用于病理(法洛四联症)病例,并且比标准程序产生更准确的结果。所提出的方法还用于为计算流体动力学提供重要输入。相应的数值结果证明了我们的方法在计算临床相关血液动力学量方面的可靠性。© 2023 Elsevier BV 保留所有权利。
1。在医疗实验室中的AI介绍(POC)客户反馈数据(2018年)确定了两个有问题的测试和自我报告的主题,这表明诸如Liebman和Conrad的R&D阶段之类的过程很重要,但可能不足以确保在所有情况下都能准确收集样品。这是一个问题,因为疾病控制中心(CDC)归因于造成所有实验室错误的46-68%的46-68%,其中35%是由于样本收集错误,可能导致诸如误诊,不正确的药物给药和患者不适等后果。这尤其令人担忧,因为此阶段完全或部分地在客户的控制之下。此外,Church(2012)最近发现,许多客户没有遵循建议的程序,例如在指纹之前直接使用旋转栅门或水槽。目前,尚不清楚这些发现在多大程度上推广到现场样本收集的标准实践。因此,在收集单一的新鲜血液毛细血管时,问题可能会在干燥的毛细血管血液的收集中识别出可能也有问题。因此,需要进一步的研究,随着世界在线的越来越多,将这项研究扩展到健康科学环境非常重要,尤其是与毛细血管血液的收集有关[1]。
常规的微生物测试对于在导致损害性能的问题之前保持至关重要,包括微生物学影响的腐蚀(MIC),过滤器堵塞和系统仪器故障。但是,当今市场上可用的测试套件仅提供速度或准确性,而不是两者兼而有之。用户被缓慢的结果妥协,这使得很难采取快速纠正措施,并且不够可靠地做出明智的决定。