已经开发出一种基于丙酮的从锂离子电池电极中回收聚偏氟乙烯 (PVDF) 的工艺。首先使用丙酮溶解 PVDF 粘合剂,然后将电极材料在丙酮中搅拌以使其与集电器分层。电极分离成电极材料、PVDF 粘合剂和集电器。测量了 PVDF 在丙酮中的溶解度与温度的关系,发现溶解度随温度升高而增加,在 150 ◦ C 左右达到最大值。测量了纯态和电极中 PVDF 的溶解速率与温度的关系。前者比后者快得多。对 PVDF 从电极中扩散的情况进行了数学建模,以预测材料回收的时间。该研究表明,通过从锂离子电池中回收 PVDF、电极材料和集电器,可以建立直接回收工艺。
吲哚乙酸(IAA)的产生是根际细菌的主要资产,可刺激和增强植物的生长。目前的工作涉及分离和鉴定从石榴酸盐,番石榴和Amla农场收集的根际土壤中产生细菌的吲哚乙酸。在十种吲哚乙酸产生分离株中,选择了两个作为有效的生产者。光谱分析,这表明在37°C下孵育72小时后,分离的细菌在孵育72小时后产生了最大浓度IAA。使用标准IAA曲线测量浓度,并通过AA2获得最大浓度。随后,通过POT分析测试了对植物生长的影响。用AA2分离物进行发芽的豌豆种子的体外处理表现出比对照更好的结果。总而言之,研究表明,IAA产生细菌是促进植物生长的有效接种剂。
摘要。Sabaria E,Yasmin Y,Ismail YS,Bessania MA,Putri I,FitriL.2024。从IE Seum温泉,Aceh Besar,印度尼西亚作为蛋白酶酶的生产者的嗜热细菌表征。生物多样性25:1867-1874。嗜热细菌是微生物,可以在超过75°C的高温环境中生存。IE Seum Hot Springs在Aceh Besar,印度尼西亚是这些嗜热细菌居住的地方。在这种极端条件下,蛋白质和酶通常是变性的,由于它们适应和产生蛋白酶等酶的能力而引起了这些感兴趣的细菌。蛋白酶称为蛋白水解酶,可以在经济和医疗领域应用。这项研究旨在通过分析16S rRNA基因并使用生化测试来表征它们,旨在隔离和鉴定在IE Seum温泉中具有最高蛋白酶产生潜力的嗜热细菌。基于结果,获得了七个嗜热细菌分离株,即BT1,BT2,BT3,BT4,BT4,BT5,BT6和BT7,每种都显示出不同的菌落特征。生化测试还揭示了每个分离物的代谢活性。在这些分离株中,BT4表现出最高的蛋白水解指数(4.65)。此外,16S rRNA基因序列分析表明,BT4菌株属于芽孢杆菌属,与芽孢杆菌,B。licheniformis和B. sonorensis具有很高的相似性。这些发现表明,BT4作为嗜热蛋白酶酶的来源具有显着的潜力。
摘要:目前,靶向烟碱乙酰胆碱受体(NACHR)的杀虫剂已被广泛使用。对杀虫剂的杀伤力作用的研究发现,它们可以影响昆虫的病毒量。杀虫剂影响昆虫病毒负荷的机制尚不清楚。在这里,我们表明靶向杀虫剂的NACHR可以通过免疫缺陷(IMD)途径影响病毒复制。我们证明,低剂量的尖型(6.8 ng/ml),充当果蝇的拮抗剂,是果蝇的拮抗剂烟碱乙酰胆碱受体α6(Dα6),显着升高了成年成年成年型成年型成人乳糖质滴虫的drosophilophila sigmavirus(dmelophila melanogaster)。相反,高剂量的Spinosad(50 ng/ml)充当Dα6的激动剂,大大降低了病毒载量。在Dα6 -Knockout Flies中不存在这种病毒水平的双向调节,这表示Spinosad作用通过Dα6的特异性。此外,Dα6的敲低导致IMD途径中基因表达降低,包括Dredd,IMD,Resish和下游抗菌肽基因ATTA和ATTB,表明先天性免疫反应降低。随后的研究表明,温和蝇与Dα6-柔软的双突变体之间的病毒滴度没有显着差异,这表明IMD途径在抗病毒防御中的作用取决于Dα6。总的来说,我们的发现阐明了NACHR信号传导与IMD途径之间的复杂相互作用,从而介导抗病毒免疫,突出了nachR靶向化合物的潜力,以无意中影响昆虫宿主中的病毒动力学。这些知识可能会为综合的害虫管理策略的发展提供信息,这些策略考虑了杀虫剂使用的更广泛的生态影响。
摘要:尽管在全球市场的需求不断增长,但仍缺乏科学分析和对阿曼醋生产的控制。与标准可接受的水平相比,醋的传统生产可能导致乙醇量升高(≥0.5%)和乙酸含量降低(<4%)。这项研究旨在将非葡萄糖杆菌物种与自发发酵产生的醋和制定起动培养物产生的日期醋分离,以快速有效地生产枣醋。在自发发酵日期醋样品中,乙酸的最高浓度为10.42%。乙酰杆菌(5个分离株),A。persici(3个分离株)和热带曲霉(3个分离株)是基于16S rRNA基因序列在日期醋中首次鉴定出来的。对于用乙酰杆菌和酵母的开胃菜制备的枣醋,乙酸的最高浓度为4.67%。总而言之,自发的发酵导致含有高浓度的乙酸,可接受的乙醇和甲醇的浓度以及三种乙酰杆菌物种的第一个分离。配制的起动培养物产生了可接受的乙酸,发酵时间减少了10次(从40天到4天)。这可以为生产个性化或商业产品提供基础,该产品可确保以更轻松,更快,更安全,更有效的方式从低质量和盈余日期生产优质枣醋。
Acetron 金属可检测 (MD) 聚甲醛 POM-C 是一种可通过视觉、金属和 X 射线检测的共聚物缩醛等级,具有出色的机械强度、冲击强度、刚度和耐化学性。它在当今的传统金属检测系统市场中广受欢迎,通过卓越的多检测功能(视觉、金属和 X 射线)改善了食品中的污染检测过程。它已成功用于肉类和家禽加工、乳制品和奶酪生产,并满足医疗和制药生产环境的各种需求。作为符合 FDA 和食品接触要求的产品,Acetron MD POM-C 使食品加工商和包装商能够获得聚合物耐磨材料提供的效率,同时还可以防止可能导致代价高昂的召回的潜在外来污染问题。
破伤风-白喉-无细胞百日咳 (Tdap) ADACEL® 供应商:赛诺菲巴斯德有限公司 BOOSTRIX® 供应商:葛兰素史克公司 适应症: A • 9 级强化剂量。 B • 每次怀孕的孕妇,最好在妊娠 27-32 周之间接种。 C • 未接种或未完全接种的儿童(7 岁及以上)、青少年和成人,包括免疫史不明的成人,完成基础免疫系列接种。 D • 为 4 岁及以上已接种脊髓灰质炎疫苗的个人提供加强剂量。 E • 伤口处理(参见伤口处理中的破伤风预防)。 F、G 由国家免疫咨询委员会推荐,但在 BC 省不免费提供:根据良好证据提出建议:• 如果成年人成年后未接种过含百日咳疫苗,则应接种一剂 Tdap 疫苗。
)和同位素(ΔD和Δ18O)内容。此数据有助于使用地热计方程估算储层温度。南区表现形式的表面特征显示出对碱性pH值(6.02至8.68),相对温度(29.97至42.57ºC),电导率(49.8至100.7 mV)和TDS(总溶解固体)的中性中性。主要的水成分是碳酸氢钠 - 碳酸氢钠(CA – NA – HCO3),表明碳酸氢盐水类型。塞拉瓦山Agam南部区域表现的平均温度深度如下:Alue Ie seu'um约288.84±2.19ºC,Alue IE MASAM在304.17±20.9ºC大约304.17±20.9ºC,Alue PU,大约290.02±6.855ºC和Alue Teungku大约265°c。 同位素数据(ΔD和Δ18O)建议陨水作为这种表现的来源。 流体地球化学分析表明,鉴于其平均温度超过225°C的高焓系统,塞拉瓦山Agam南部地区的地热表现具有地热发育或地热发电厂的建造潜力。 进一步的研究(包括数据钻探)对于收集精确的地下数据至关重要。 此外,亚齐省政府应制定政策,以确定地热发展的战略领域,利用现有的可剥削潜力。塞拉瓦山Agam南部区域表现的平均温度深度如下:Alue Ie seu'um约288.84±2.19ºC,Alue IE MASAM在304.17±20.9ºC大约304.17±20.9ºC,Alue PU,大约290.02±6.855ºC和Alue Teungku大约265°c。同位素数据(ΔD和Δ18O)建议陨水作为这种表现的来源。流体地球化学分析表明,鉴于其平均温度超过225°C的高焓系统,塞拉瓦山Agam南部地区的地热表现具有地热发育或地热发电厂的建造潜力。进一步的研究(包括数据钻探)对于收集精确的地下数据至关重要。此外,亚齐省政府应制定政策,以确定地热发展的战略领域,利用现有的可剥削潜力。
概览: Acequia – 水和灌溉系统相关基础设施项目。 与非联邦合作伙伴按 75/25 的比例分摊项目成本,或与符合条件的经济弱势社区按 90/10 的比例分摊项目成本。 项目规模通常为中型到大型。 设计和施工支持。权力机构。1986 年《水资源开发法》修订版第 1113 条授权美国陆军工程兵团与非联邦赞助商签订成本分摊协议,以保护和恢复整个新墨西哥州的 Acequia 系统。根据第 1113 条的权力,援助可能以灌溉水相关基础设施系统项目的设计和施工形式提供。项目成本按联邦 75%、非联邦 25% 的比例分摊,除非是惠及经济弱势群体的措施(由部长根据《2020 年水资源开发法》第 160 条(33 USC 2201 注)定义),而实施此类措施的成本中联邦份额应为 90%,非联邦份额为 10%。非联邦赞助商应获得土地、地役权、通行权和搬迁费用的抵免,以抵消项目成本的非联邦份额,但不得超过项目总成本的 25%。流程。具有签订协议的法律和财务能力的非联邦赞助商将向工程兵团提供该计划下的援助请求。
如今,全球变暖是现代社会中最重要的关注之一,它需要考虑到环境,健康,经济等。化石燃料在这一现象中起着至关重要的作用,并且在过去几十年中找到替代方案一直是研究主题。在可用的一系列选择中,生物燃料是一种高效且在环境可持续的替代方案。生物丁醇预处理特性,例如高加热值,低波动性,高粘度和低腐蚀。此外,它是一个更安全的使用选择,它与汽油和其他燃料融合的能力将其变成了合适且有希望的可再生替代方案。生物丁醇可以由丙酮 - 丁醇 - 乙醇(ABE)发酵过程从农业产业的残留物中产生。生物丁醇与发酵汤的分离和纯化占工厂预算的40%,这是值得注意的。应用了各种分离技术,例如液 - 液体提取,膜人物剥离,真空闪光,膜过度蒸发,透明装置,反渗透,吸附等。一种适合的分离方法必须在产出中产生足够的丁醇浓度,并降低最终产品的成本,以便生物丁醇可以与其他燃料在经济上竞争。这项工作审查了现有的过程,用于将丁醇与安倍发酵的分离和纯化,包括高级方法。考虑环境和经济参数以及每种技术的上级和挑战,将详细讨论所有方法。