多肽(GIP)受体激动剂 - 已更名 • HCV 直接作用抗病毒药物 • 吸入性皮质类固醇 • LABA • LAMA/LABA • 多发性硬化症,注射药物 - 新增 • 多发性硬化症,口服药物 - 已更名 • 孤儿药 • 质子泵抑制剂 (PPI) • 醋酸孕酮和乙炔雌二醇年度阴道系统 (Annovera®) - 新增 • 钠-葡萄糖协同转运蛋白-2 抑制剂 (SGLT-2 抑制剂) • 针对严重哮喘和特应性皮炎的靶向免疫调节剂 • 针对自身免疫性疾病的靶向免疫调节剂 • 针对炎症性皮肤病的外用药物 更改各种其他标准以与 EPSDT 计划下的个性化审查保持一致
缩写:ARV =抗逆转录病毒; C =避孕方法的延续; CHC =组合的激素避孕药(药丸,斑块和环); COC =组合口服避孕药; cu-iud =铜经内装置; dmpa =乙酸盐二甲酸二核; I =避孕方法的启动; lng-iud =左甲虫内装置; na =不适用; pop =仅孕激素的药丸; p/r = patch/ring; SSRI =选择性5-羟色胺再摄取抑制剂; STI =性传播感染; VTE =静脉血栓栓塞。‡与怀孕导致风险增加有关的状况。*请参阅完整的指南以阐明此分类:https://www.cdc.gov/contraceptimption/hcp/usmec/。
除了食欲调节外,饮食纤维还通过改变养分的吸收和代谢来影响能量平衡。纤维通过将脂肪和碳水化合物捕获在其基质中,从而降低食物中卡路里的生物利用度,从而限制其消化和吸收。这意味着在高纤维餐中消耗的一些卡路里被排出而不是被人体使用,从而有效地降低了整体卡路里的摄入量。此外,结肠中某些纤维的发酵产生短链脂肪酸(SCFA),例如乙酸盐,丙酸和丁酸酯。这些SCFA已被证明会影响能量稳态,减少脂肪的积累并提高胰岛素敏感性,所有这些都有助于体重管理。
缩写:ARV = 抗逆转录病毒;C = 继续避孕方法;CHC = 复方激素避孕药(避孕药、避孕贴和避孕环);COC = 复方口服避孕药;Cu-IUD = 铜宫内节育器;DMPA = 长效醋酸甲羟孕酮;I = 开始避孕方法;LNG-IUD = 左炔诺孕酮宫内节育器;NA = 不适用;POP = 纯孕激素避孕药;P/R = 避孕贴/避孕环;SSRI = 选择性血清素再摄取抑制剂;STI = 性传播感染;VTE = 静脉血栓栓塞症。‡ 与妊娠导致的风险增加相关的疾病。 *有关此分类的说明,请参阅完整指南:https://www.cdc.gov/contraception/hcp/usmec/。
热能电气化要求开发创新型家用热电池,以有效平衡能源需求和可再生能源供应。热化学储热系统由于其高热能存储密度和最小的热损失,在支持供暖电气化方面显示出巨大的前景。在这些系统中,基于盐水合物的热化学系统特别有吸引力。然而,它们在蒸汽存在下确实存在缓慢的水合动力学问题,这限制了可实现的功率密度。此外,它们相对较高的脱水温度阻碍了它们在支持供暖系统中的应用。此外,在供暖应用中实施这些系统时,仍然存在关于适当的热力学、物理、动力学、化学和经济要求的挑战。本研究分析了一种基于醋酸钠与液态水直接水合的热化学储能方案。所提出的方案满足了供暖应用的众多要求。通过直接将液态水添加到盐中,实现了前所未有的 5.96 W/g 的功率密度,比之前报道的其他利用蒸汽的盐基系统高出近两个数量级。尽管由于潮解和颗粒聚集,反应性会下降,但事实证明,通过加入 10% 的二氧化硅可以有效缓解这种失活,从而实现较低但稳定的能量和功率密度值。此外,与之前研究的其他盐不同,乙酸钠可以在热泵等电加热系统的理想温度范围内完全脱水(40 ◦ C - 60 ◦ C)。通过实验分析确定了所提方案在脱水、水合和多循环行为方面的性能。
摘要益生菌枯草芽孢杆菌29784(BS29784)通过生物活性代谢物低黄嘌呤(HPX),烟酸(NIA)(NIA)和Pantothenate(PTH)来维持鸡的肠道健康,从而增强动物的韧性和性能。在这里,使用肠球菌在体外模型中,我们确定了这些代谢产物与肠道弹性的三个支柱之间的功能联系:免疫反应,肠壁和微生物群。我们在体外评估了BS29784营养细胞,孢子和代谢产物的能力,以调节全球免疫调节剂(使用HT-29-NF-κB和HT-29-AP-1报道细胞),肠道完整性),肠道完整性(HT-29-MUC2报道细胞)(HT-29-MUC2报道细胞和CACO-2细胞)以及CACO细胞(CACO-2),以及CACO-2-2。最后,我们使用鸡肉肠含量作为接种,模拟了肠发酵,以确定BS29784代谢产物对微生物群及其发酵型的影响。BS29784营养细胞比孢子更有效地降低了炎症反应,这表明它们的益处与代谢活性有关。为了评估这一假设,我们分别研究了BS29784代谢产物。结果表明,每个代谢产物都有不同的有益作用。pth和niA降低了促炎性途径AP-1和NF-κB的激活。HPX通过增强MUC2表达上调粘蛋白的产生。HPX,NIA和PTH增加了细胞增殖。PTH和HPX通过限制渗透性的增加来提高上皮弹性对炎症挑战。在盲肠发酵中,nia增加了乙酸乙酸盐,HPX增加了丁酸酯,而PTH则增加了乙酸乙酸酯,丁酸酯和丙酸酯。在回肠发酵中,PTH增加了丁酸酯。 所有分子调节菌群,解释了不同的发酵模式。 总的来说,我们证明了BS29784通过其分泌的代谢物在弹性的三条线上作用,从而影响了肠道健康。在回肠发酵中,PTH增加了丁酸酯。所有分子调节菌群,解释了不同的发酵模式。总的来说,我们证明了BS29784通过其分泌的代谢物在弹性的三条线上作用,从而影响了肠道健康。
摘要:需要更绿色的过程满足平台化学物质的需求,以及从人类活动中重复使用CO 2的可能性,最近鼓励了对生物电化学系统(BESS)的设置,优化和开发的研究,以从无线电碳(Co 2,Hco 3-co 3 - )中进行有机化合物的电合合成。在本研究中,我们测试了糖氯丁基乙二醇N1-4(DSMZ 14923)的能力,从而产生乙酸盐和D-3-羟基丁酸的D-3-羟基丁酸,从CO 2:N 2气体中存在的无机碳中产生。同时,我们测试了Shewanella Oneidensis MR1和铜绿假单胞菌PA1430/CO1财团的能力,以提供降低的能力以维持阴极的碳同化。我们测试了具有相同布局,接种物和介质的三个不同系统的性能,但是使用1.5 V外部电压,1000Ω外部负载,并且没有电极或外部设备之间的任何连接(开路电压,OCV)。我们将CO 2同化速率和代谢产物的产生(甲酸盐,乙酸3-D-羟基丁酸)与非电气对照培养物中获得的值进行了比较,并估计了我们的BESS用来同化1摩尔的CO 2的能量。我们的结果表明,当微生物燃料电池(MFC)连接到1000Ω外部电阻器时,糖链球菌NT-1的最大CO 2同化(95.5%),并以Shewanella / Pseudomonas conscontium作为电子来源。此外,我们检测到C. saccharoperbutylacetonicum nt-1的代谢发生了变化,因为它在BES中的活性延长。我们的结果开放了在碳捕获和平台化学物质的电气合成中利用BES的新观点。
简介和目的:本研究旨在调查急诊科 (ED) 成年患者复发性和活动性鼻出血的患病率,并探讨复发性鼻出血与成人鼻出血患者的人口统计学特征、合并症和药物以及紧急干预类型的关联。方法:对 2019 年 1 月至 2022 年 1 月三年间两家三级医院的急诊科数据进行了回顾性横断面研究。纳入所有年龄 ≥18 岁、通过按压鼻子或头部定位无法缓解活动性鼻出血的成年患者。从患者的电子病历中收集人口统计学数据、临床表现和临床管理的详细信息。结果:404 名患者中,73 名 (18.1%) 在 28 天内因鼻出血复发再次就诊。本研究中男性患者较多,平均年龄为 55.4 ± 18.03 岁。大多数患者有单侧(n = 328,81.2%)和前鼻(n = 376,93.1%)出血。心力衰竭作为一种合并症与复发性鼻出血风险显著增加相关(p = 0.001)。最常见的治疗方法包括可膨胀聚醋酸乙烯酯袋 (EPAP) (n = 198,49%);外用赛洛唑啉 (n = 108,26.7%);和化学烧灼 (n = 57,14.1%)。EPAP 控制初期出血与因鼻出血再次就诊 ED 显著相关(p = 0.033)。结论:复发性鼻出血大多发生在老年男性中。充血性心力衰竭可能是复发性鼻出血的一个未被充分认识的危险因素。对于鼻出血复发风险较高的患者,应寻求除可膨胀聚醋酸乙烯包以外的其他治疗方式,因为它们可能会增加再次出血的风险。关键词:鼻出血、复发、风险因素、合并症
抽象的有氧γ-细菌甲烷嗜酸菌(GMOB)是控制淡水生态系统中甲烷 - 氧化界面的关键生物。在低氧环境下,GMOB可能将其有氧代谢转移到发酵中,从而导致细胞外有机酸的产生。我们最近分离了代表甲基杆菌属的GMOB菌株。北方湖水柱的 s3l5c)并证明它在低氧条件下将甲烷转化为有机酸(乙酸盐,甲酸盐,苹果酸和丙酸)。 对分离株基因组中有机酸产生的推定基因的注释以及代表甲基杆菌属的环境元基因组组装基因组(MAGS)。 表明,甲烷转化为有机酸的潜力在甲基杆菌属中广泛发现。 淡水生态系统。 但是,尚不清楚将甲烷转化为有机酸的能力是否仅限于甲基杆菌属。 或普遍存在的其他淡水GMOB属。 因此,我们从北方湖水柱中分离了两个额外的GMOB属的代表,即甲基瘤paludis s2am和甲基伏洛伏氏菌精神分裂症S1L,以及类似的生物转化能力。 这些属可以将甲烷转化为有机酸,包括醋酸盐,甲酸盐,琥珀酸酯和苹果酸。 另外,S2AM产生了乳酸。 此外,我们检测到编码其基因组中的有机酸产生的基因和代表甲基瘤属的MAG中。 和甲基化属。s3l5c)并证明它在低氧条件下将甲烷转化为有机酸(乙酸盐,甲酸盐,苹果酸和丙酸)。对分离株基因组中有机酸产生的推定基因的注释以及代表甲基杆菌属的环境元基因组组装基因组(MAGS)。表明,甲烷转化为有机酸的潜力在甲基杆菌属中广泛发现。淡水生态系统。但是,尚不清楚将甲烷转化为有机酸的能力是否仅限于甲基杆菌属。或普遍存在的其他淡水GMOB属。因此,我们从北方湖水柱中分离了两个额外的GMOB属的代表,即甲基瘤paludis s2am和甲基伏洛伏氏菌精神分裂症S1L,以及类似的生物转化能力。这些属可以将甲烷转化为有机酸,包括醋酸盐,甲酸盐,琥珀酸酯和苹果酸。另外,S2AM产生了乳酸。此外,我们检测到编码其基因组中的有机酸产生的基因和代表甲基瘤属的MAG中。和甲基化属。湖泊和池塘生态系统。总的来说,我们的结果表明,甲烷转化为各种有机酸是湖泊和池塘GMOB之间广泛发现的性状,突出了它们作为甲烷碳的关键介质的作用,以供淡水湖和池塘生态系统的微生物食品网。
序号 内容 学习时间 1. 环状体系的构象分析:环己烷及其衍生物(单、二和三取代)、稠合(十氢化萘)和桥连双环体系,动态立体化学,构象刚性和移动性,构象与反应性的定量相关性,构象对环状酮还原的影响,羰基的亲核加成(Cram、Karabatsos、Felkin-Ahn 模型,Cieplak 效应),环己烷底物上的亲核取代,环己烷环氧物的形成和开环,环己基卤化物、乙酸酯和相关化合物的消除反应,2-氨基环己醇的脱氨,非环状和环状分子的消除与取代竞争以及邻基参与反应。
