摘要:我们提出了 BEHAVIOR-1K,一个以人为本的机器人综合模拟基准。BEHAVIOR-1K 包括两个部分,分别由“您希望机器人为您做什么?”这一广泛调查的结果指导和推动。第一个部分是定义 1,000 种日常活动,基于 50 个场景(房屋、花园、餐厅、办公室等),其中有 5,000 多个对象,并标注了丰富的物理和语义属性。第二个部分是 O MNI G IBSON,这是一个新颖的模拟环境,它通过逼真的物理模拟和刚体、可变形体和液体的渲染来支持这些活动。我们的实验表明,BEHAVIOR-1K 中的活动是长期的并且依赖于复杂的操作技能,这两者对于最先进的机器人学习解决方案来说仍然是一个挑战。为了校准 BEHAVIOR-1K 的模拟与现实之间的差距,我们提供了一项初步研究,研究如何在模拟公寓中使用移动机械手学到的解决方案转移到现实世界中。我们希望 BEHAVIOR-1K 的人性化本质、多样性和现实性能够使其对具身化 AI 和机器人学习研究有价值。项目网站:https://behavior.stanford.edu。
4.2 税费:您承认并同意,您有义务将从 Sapien 收到的所有报酬报告为自雇收入。收到 Sapien 的任何资金后,您有责任支付所有所得税。您有责任遵守适用于您的任何当地、州、省、联邦或国际税法和法规。您必须确保及时进行所有必要的税务申报和付款,并保留准确的记录以支持您的税务报告义务。Sapien 不负责代表您预扣任何税款,您同意赔偿并使 Sapien 免受因您未能报告和支付任何适用税款而引起或与之相关的任何索赔、责任、损害、损失和费用(包括合理的律师费)。
摘要 脑机接口 (BCI) 是一种将大脑活动转化为操作技术命令的系统。脑电图 (EEG) BCI 的常见设计依赖于 P300 事件相关电位 (ERP) 的分类,这是一种由常见非目标刺激中罕见的目标刺激引起的反应。现有的 ERP 分类器很少直接探索神经活动的潜在机制。为此,我们对 P300 ERP-BCI 设计下的多通道真实 EEG 信号的概率分布进行了新颖的贝叶斯分析。我们的目标是识别神经活动的相关时空差异,这为 P300ERP 反应提供了统计证据,并有助于设计高效、准确的个性化 BCI。作为我们对单个参与者分析的一项重要发现,视觉皮层周围通道的目标 ERP 在刺激后约 200 毫秒达到负峰值的后验概率为 90%。我们的分析确定了 BCI 拼写器的五个重要通道(PO7、PO8、Oz、P4、Cz),从而实现了 100% 的预测准确率。从对其他九名参与者的分析中,我们一致地选择了确定的五个通道,并且选择频率对带通滤波器和内核超参数的微小变化具有稳健性。本文的补充材料可在线获取。
学习多个参与者之间的时空关系对于群体活动识别至关重要。不同的群体活动通常会展示视频中参与者之间的多样化互动。因此,从时空参与者演化的单一视角来建模复杂的群体活动往往很困难。为了解决这个问题,我们提出了一个独特的双路径参与者交互 (Dual-AI) 框架,它以两种互补的顺序灵活地排列空间和时间变换器,通过整合不同时空路径的优点来增强参与者关系。此外,我们在 Dual-AI 的两个交互路径之间引入了一种新颖的多尺度参与者对比损失 (MAC-Loss)。通过帧和视频级别的自监督参与者一致性,MAC-Loss 可以有效区分单个参与者表示,以减少不同参与者之间的动作混淆。因此,我们的 Dual-AI 可以通过融合不同参与者的这些判别特征来增强群体活动识别。为了评估所提出的方法,我们在广泛使用的基准上进行了大量实验,包括排球 [ 21 ]、集体活动 [ 11 ] 和 NBA 数据集 [ 49 ]。所提出的 Dual-AI 在所有这些数据集上都实现了最佳性能。值得注意的是,所提出的 Dual-AI 使用 50% 的训练数据,其性能优于许多近期使用 100% 训练数据的方法。这证实了 Dual-AI 在群体活动识别方面的泛化能力,即使在有限监督的具有挑战性的场景下也是如此。
● Consor 对 442 名居民进行了调查,以确定 WAC 的社区使用优先事项。调查结果显示,社区/社会活动 (79%)、紧急/灾难响应 (76%)、人类/社会关怀 (73%) 和健康/医疗护理 (72%) 是首要优先事项。● 获得俄勒冈州能源部 (ODOE) 颁发的 3 万美元太阳能和电池备份可行性研究奖。● Food for Lane County 为 Oakridge Food Box 提供了 5 万美元的资助。2024
去年的喧嚣始于俄罗斯与乌克兰军事冲突后的网络对抗。 两国之间的战争得到了几个威胁行为者(AgainstTheWest、NetSec、GhostSec、Kelvinsecurity、Stormous Ransomware Group 和几个核黑客组织)的加入,他们从 2022 年 3 月到 9 月针对私人组织和政府机构发动了一系列协同网络攻击,以配合冲突双方各自的盟友。(参考文献 1 和 2)
成立于1959年,肯尼亚制造商协会(KAM)是肯尼亚制造和价值行业的代表。该协会是推动基于事实的政策倡导以制定工业政策来加强和支持该国经济发展的焦点。通过基于事实的倡导,KAM与政府及其相关机构的合作伙伴确保在肯尼亚建立动态和蓬勃发展的制造业,以实现对GDP的两位数贡献。
摘要 - 以餐后的血糖水平超过正常范围的标志性的植物性高血糖,这是在糖尿病和健康个体中向2型糖尿病进展的关键指标。饮食后了解血糖动力学的关键指标是曲线下的餐后区域(PAUC)。根据人的饮食和活动水平预测PAUC,并解释什么影响餐后血糖可以使人可以相应地调整其生活方式以维持正常的葡萄糖水平。在本文中,我们提出了葡萄糖,这是一种可解释的机器学习,以预测饮食,活性和最近的葡萄糖模式中的PAUC和高血糖。我们对10个全职工作人员进行了为期五周的用户研究,以开发和评估计算模型。我们的机器学习模型采用多模式数据,包括空腹葡萄糖,近期葡萄糖,最近的活性和大量营养素量,并提供了可解释的餐后葡萄糖模式的预测。我们对收集到的数据的广泛分析表明,训练有素的模型达到了0.123的归一化均方根误差(NRMSE)。平均而言,带有随机森林主链的葡萄糖素比基线模型可获得16%的结果。此外,血糖素可以准确地预测高血糖率74%,并建议通过不同的反事实解释来帮助避免高血糖。可用代码:https://github.com/ab9mamun/glucolens。