▪ 需要操作的阀门位置较远 ▪ 每次都需要有关于阀门位置的信息 ▪ 同时功能:不可能同时操作几个阀门 ▪ 可靠性/安全性/重复功能:避免可能的人为错误(有人忘记打开/关闭阀门) ▪ 避免禁止操作 ▪ 定位(调制) ▪ 舒适性 ▪ 高扭矩
▪ ETL 电子扭矩控制:连续电子控制可实现平稳运行,并可精确控制电机消耗,直至达到最大扭矩。超过此点时,ETL 系统会停止电源,以避免执行器出现任何可能的故障,并允许紧急手动操作。内部 LED 提供 ETL 情况的视觉信息。
顾名思义,悬臂梁 MEMS 开关是一种由机械位移控制的电开关。它由两个主要部分组成:底座和悬臂梁(图 1)[1]。悬臂梁由导电材料制成(或其一部分,取决于设计),通常是铝。底座上沉积有一层导电材料层。在设备的这两个导电部分之间施加电压后,形成一个有限平行板电容器 [2, 3],由于电容器板之间的静电吸引力 [4, 5],悬臂梁开始向底座弯曲。悬臂梁以弹性反作用力 [6] 作出反应,并在两个力抵消的位置停止。在某个电压(驱动电压)[7–10] 下,力之间的平衡变得不稳定,悬臂梁在底座上坍塌 [11],从而建立电容器板之间的接触并闭合电路。在该模型中,认为下电极上没有沉积介电层(因此极化电荷可以忽略不计 [12])。新的理论模型考虑了有限平行板电容器中的边缘效应。将理论上获得的驱动电压与计算机模拟的 MEMS 设备驱动电压进行了比较。
真正的随机数发生器在许多计算应用中引起了极大的兴趣,例如密码学,神经形态系统和蒙特卡洛模拟。在这里,我们研究了这种应用,在弹道极限内通过短持续时间(NS)脉冲激活的垂直磁性隧道连接纳米柱(PMTJ)。在此极限中,脉冲可以将初始自由层磁力态的玻尔兹曼分布转换为随机磁性下降或向上的状态,即有一个0或1的位,很容易通过测量结的隧道电阻来确定。证明,具有数百万事件的比特斯流:1)通过正态分布非常近似; 2)通过多个统计测试进行真实随机性,包括所有仅具有一个XOR操作的随机数发电机的国家规范研究所测试; 3)可用于创建8位随机数的均匀分布; 4)随着时间的推移,位概率不会漂移。此处介绍的结果表明,与其他随机纳米磁性设备相比,在弹道制度中运行的PMTJ可以在50 MHz比特率下生成真实的随机数,同时对环境变化(例如其工作温度)的稳定性更大。
OHB Italia 设计、制造并认证了一种用于太空望远镜的新型盖门组装机制 (CDAM)。CDAM 的主要目的是保护仪器免受阳光照射。此外,它可以限制 AIT 和存储阶段的灰尘颗粒污染。该系统由四个主要子组件组成:压紧和释放机制 (HDRM)、致动系统、盖门和应急系统。HDRM 基于三个分离螺母致动器,需要预加载锥形可分离 I/F 上的球体。另一方面,致动系统配备了带有冗余绕组的步进齿轮马达。齿轮马达将直径为 1 米的盖门旋转 270 度。如果齿轮马达发生故障,应急系统会将致动器与盖门分离。同时,该系统会强制打开盖门。它基于高输出石蜡致动器 (HOPA)。当 HOPA 启动时,它会脱离齿轮马达并接合预载扭力弹簧。弹簧对盖门施加扭矩,使其永久打开。在此阶段,扭矩应用由擒纵机构控制。本文介绍了 CDAM 设计以及环境测试活动的结果。特别关注了在机制集成和测试过程中获得的经验教训。简介
作者:A Cook · 2020 · 被引用 4 次 — LaMSA 系统加载至弹簧位移 ymax,该位移由加载电机和弹簧力相等计算得出。B-C 解锁和解锁过程中的动态...
摘要 — 风能是最有前途的可再生能源之一,风力涡轮机设计和控制的改进可以对能源可持续性产生重大影响。在本文中,我们做出了两个主要贡献:首先,我们开发并展示了一种用于研究目的的驱动微型风力涡轮机。虽然大多数关于风力涡轮机控制的学术工作主要集中在模拟评估上,但大多数涡轮机模拟器在模拟涡轮机引起的非稳定气动效应方面的能力非常有限;因此,在物理系统上验证风力涡轮机控制方法具有巨大的价值,我们在此介绍的平台可以以非常低的成本实现这一点。本文的第二个贡献是一种新颖的策略搜索方法,应用于优化 II 区风速下的发电量。我们的方法在本质上与强化学习方法(例如 REINFORCE 算法)类似,但明确地对成本函数的二阶项进行建模,并有效利用过去的执行数据。我们在物理涡轮机上评估了这种方法,并表明它能够在大约一分钟的执行时间内快速且可重复地实现接近最佳的发电量,而无需先验动力学模型。
无线驱动和远程控制的活跃软材料已引起了大量的研究注意,因为与传统的智能材料相比,它们在各种各样的领域中具有潜在的潜在应用,其性能有所改善。[1-5]这些合成伴侣对环境刺激的反应并表现出模仿或与自然界观察到的行为或现象相匹配的能力。[6-8]在这些智能材料中,机械刺激响应材料从环境输入中收获能量,例如光线,[9-11]热量,[12,13]溶剂,[14,15]和物理领域和[16-18],并将其转换为机械能量,无需通过机械形状,无需通过板上的功率来源。这些无线材料可以完成各种功能,例如运动[19-21]以及物体操纵和运输[22-24]作为执行器和传感器。在迄今为止报道的大量活跃智能材料中,由于它们的独特特征和独特的优点,液晶弹性体(LCE)和磁反应弹性体(MRE)最近与其他人脱颖而出。lces表现出大量的菌株(高达400%)和高度工作,以响应多种环境刺激,例如温度[25-27]光,[11,28]和电场。[17,18,29] LCES内部元素的预定对齐(由导演n描述)启用了已在软执行器和生物启发的设备中使用的复杂的3D可逆形状。这些局部菌株共同起作用,以实现指定的形状 - 修复行为,这通常是平面外弯曲的。[6,11,30]外部刺激会根据LCES的当地董事场诱导收缩和拉伸菌株的对齐中的订单参数。另一方面,MRE由柔软的弹性体(SE)矩阵组成,其嵌入式硬磁性微或纳米果(MMPS或MNP)组成。外部磁场在嵌入的MMP或MNP上产生局部力和扭矩。分离的扭矩会导致身体变形和MRE材料的净旋转,而颗粒所经历的力会融合到净力,从而置换MRE或变形。[31]磁性致动具有远距离,健壮和快速致动的优势,并且瞬间的能力
在本文中,我们提出了电磁驱动的微型管理器的计量和控制方法和技术。电磁驱动的悬臂属于微分辨率和质量变化调查的微分辨率机械系统(MEMS)。在所述的实验中,研究了具有综合洛伦兹电流环的硅悬臂。使用经过修改的光束偏转(OBD)系统对电磁驱动的悬臂进行了表征,其架构得到了优化,以提高其分辨率。使用参考悬臂校准OBD系统的灵敏度,其弹簧常数是通过热力学噪声分析进行了干预的。使用优化和校准的OBD系统用于产生电磁扭曲的悬臂的共振和双向静态差异。在理论分析和进一步的实验之后,可以获得等于5.28 mV/nm的设置灵敏度。关键字:光束旋转,热机械噪声,低频噪声,电磁驱动的悬臂,洛伦兹力。
摘要 在重型机械应用中,液压通常用于驱动机构。本文提出了一种用于液压驱动多体系统的线性化方法。该方法允许线性化具有完整和非完整约束的一般多体系统的运动方程,并增加液压子系统的液压方程。这种线性化方法的推导在许多应用中都很有趣,例如执行线性稳定性分析。使用液压驱动四杆机构的三维多体模型测试了该程序。通过线性和非线性系统的正向动力学模拟来验证该方法。结果显示了该方法的强大功能