可能会影响飞行动力学。本文评估了机身变形在飞行中的作用,并探究腹部对飞行机动性的贡献程度。为了解决这个问题,我们结合使用了受模型预测控制 (MPC) 启发的计算惯性动力学模型和天蛾 Manduca sexta 的自由飞行实验。我们探索了欠驱动(即输出数量大于输入数量)和完全驱动(输出和输入数量相等)系统。使用无量纲跟踪误差和传输成本等指标来评估惯性动力学模型的飞行性能,我们表明完全驱动模拟可最大限度地减少跟踪误差和传输成本。此外,我们通过将碳纤维棒固定在胸腹关节上,测试了限制腹部运动对活天蛾自由飞行的影响。腹部受限的飞蛾表现比假治疗飞蛾差。这项研究发现腹部运动有助于飞行控制和机动性。这种非气动结构运动存在于所有飞行类群中,可以为多驱动微型飞行器的开发提供参考。
Matthew J. Press 首席疏散工程师 机组保护部 人体系统组 布鲁克斯城基地,TX 78235 摘要 先进概念弹射座椅(ACES)目前使用模拟序列器,该序列器设计于 20 世纪六七十年代,采用模拟技术,用于控制弹射事件时间和弹射模式选择。继续使用模拟序列器是不可取的,因为其安装寿命有限、电子元件过时、无法灵活适应座椅安全改进,以及在模式 1 到 2 交叉点的模式区分能力。数字恢复序列器 (DRS) 项目由座椅原始设备制造商 (OEM) Goodrich 和弹药作动装置/推进剂作动装置 (CAD/PAD) 联合项目办公室 (JPO) 共同承担,旨在设计和鉴定基于数字技术的序列器,以替代模拟序列器。 DRS 计划分为三个阶段:第一阶段为需求定义和供应商选择,第二阶段为设计和认证,第三阶段为预先计划生产 (P 3 I) 改进。第一阶段于 2003 年完成。第二阶段包括设计、固件验证、组件认证和
昆虫飞行控制研究主要集中在翅膀的作用上。然而,飞行过程中腹部的偏转可能会影响飞行动力学。本文评估了机身变形在飞行中的作用,并询问腹部对飞行机动性的贡献程度。为了解决这个问题,我们结合使用了模型预测控制 (MPC) 启发的计算惯性动力学模型和天蛾 Manduca sexta 的自由飞行实验。我们探索了欠驱动(即输出数量大于输入数量)和完全驱动(输出和输入数量相等)系统。使用无量纲跟踪误差和传输成本等指标来评估惯性动力学模型的飞行性能,我们表明完全驱动模拟可以最大限度地减少跟踪误差和传输成本。此外,我们通过在胸腹关节上固定碳纤维棒来测试限制腹部运动对活天蛾自由飞行的影响。腹部受限的飞蛾表现比假治疗飞蛾差。这项研究发现腹部运动有助于飞行控制和机动性。这种非气动结构运动存在于所有飞行类群中,可以为多驱动微型飞行器的开发提供参考。
昆虫飞行控制研究主要集中在翅膀的作用上。然而,飞行过程中腹部的偏转可能会影响飞行动力学。本文评估了机身变形在飞行中的作用,并探究腹部对飞行机动性的贡献程度。为了解决这个问题,我们结合使用了模型预测控制 (MPC) 启发的计算惯性动力学模型和天蛾 Manduca sexta 的自由飞行实验。我们探索了欠驱动(即输出数量大于输入数量)和完全驱动(输出和输入数量相等)系统。使用无量纲跟踪误差和传输成本等指标来评估惯性动力学模型的飞行性能,我们表明完全驱动模拟可以最大限度地减少跟踪误差和传输成本。此外,我们还通过在胸腹关节上固定一根碳纤维棒来测试限制腹部运动对活天蛾自由飞行的影响。腹部受限的蛾子表现比假治疗蛾子差。这项研究发现腹部运动有助于飞行控制和机动性。这种非气动结构的运动存在于所有飞行类群中,可以为多驱动微型飞行器的开发提供参考。
气体显著降低了现场成本,减轻了员工的压力,而且使用起来比钻孔或火药驱动工具 (PAT) 安静得多,因此您可以在有人居住的建筑物中工作。有时您需要我们的 PAT 的功率和准确性 - 例如我们的 XT540 剥线工具的速度,或者几乎免维护的 721 单发 PAT 的主力。但持续使用这些工具可能会产生噪音并对身体造成过度震动。
磁响应软材料是下一代软机器人、假肢、手术工具和智能纺织品的有前途的构建模块。然而,迄今为止,制造具有极端长宽比的高度集成磁性纤维(可用作可操纵导管、内窥镜或功能性纺织品)仍然具有挑战性。本文提出了多材料热拉伸作为材料和加工平台,以实现数十米长的柔软、超可拉伸且高弹性的磁性纤维。展示了直径低至 300 μ m、长宽比为 10 5 的纤维,将纳米复合域与嵌入软弹性体基质中的铁磁微粒集成在一起。通过选择适当的填料含量,必须在磁化密度和机械刚度之间取得适当的平衡,展示了可承受 > 1000% 应变的纤维,它们可以被磁力驱动并举起高达自身重量 370 倍的重量。磁性纤维还可以集成其他功能,如微流体通道,并编织到传统纺织品中。研究表明,这种新型磁性纺织品可以清洗并承受极端的机械约束,并且在磁力驱动下可以折叠成任意形状,这为医疗纺织品和软磁系统领域的新奇机遇铺平了道路。
摘要 - 由于其非传统运动学和动态架构以及它们频繁使用次优成像方式,因此磁性驱动的millirobot的演变引起了独特的远程操作挑战。最近对Millirobot的触觉接口的调查显示了希望,但缺乏为未来发展辩护所必需的临床动机任务情景。在这项工作中,我们调查了在视觉不足条件下磁性驱动的millobot的双侧远程作用的触觉反馈的效用。我们在动脉瘤盘绕的过程中进行了N = 23个用户研究,该程序要求参与者通过Maze在几乎完全黑暗的迷宫中导航,以在模拟的荧光镜检查下操纵珠子到目标。我们假设用户将通过触觉反馈更好地完成远程接管任务,同时与无反馈条件相比,用户可以减少周围环境的过多力量。我们的结果表明,参与者的珠子评分提高了40%以上,平均力量降低了近10%,并且具有触觉反馈的最大力量降低了13%,并且其他指标的显着改善。结果表明,当删除触觉反馈时,保留了触觉反馈的好处。这些发现表明,触觉反馈有可能显着改善传统视力不足的任务中的Millirobot远程注射和控制。
– 自动化——是指根据预先定义的规定规则自动执行特定任务的系统。例如,当工艺参数超过某些规定的限值时,反应堆保护系统会自动启动。 – 自主性——一组基于智能的功能,使系统能够对部署前未预先编程或预期的情况(即基于决策的响应)做出响应。自主系统具有一定程度的自我管理和自我指导行为,从而能够在没有外部干预的情况下弥补系统故障。
设计和功能 DEPRAG 速度调节器由一个非接触式速度传感器组成,该传感器直接集成在实际叶片马达和齿轮之间的气动马达中。传感器获取实际速度并将数字信号传递给调节器。调节器“知道”所需的标称值,可以轻松将其输入到控制器的 LC 显示屏中。控制模块已准备好通过简单的 DIN 导轨安装到客户的控制箱中。所需的速度可以轻松输入到操作员友好的 LC 显示屏中。当出现偏差时,调节气动马达气流的比例阀会启动。
完全自动启动,但同时也集成到安全控制系统中,用于监控泄压循环、阀座泄漏和其他维护需求。阀门还将集成到安全控制系统中,这样阀门将能够通过电子或液压信号启动,作为整个安全系统的一部分。此外,制造商将继续采用允许阀门更轻、性能更长、更经济使用的材料。此外,由于这些阀门的安全功能,它们需要无限期地保存尺寸标准、维护记录和其他信息的完整历史记录。在不久的将来,这些信息将通过电子标记或识别“存储”和/或“绑定”到阀门上。'
