点火和分级控制器 (ISC) 为固体火箭助推器发动机点火和运载火箭/导弹分级分离事件提供烟火点火能量。ISC 与标准 1 欧姆启动器接口,符合 NASA 标准启动器标准。该装置能够满足低压启动器电流和能量要求,并可连接极长的电缆。ISC 使用电容放电点火电路,无需专用烟火电池,从而简化了航空电子设备架构。ISC 具有独特的双容错功能,专为高度可靠的载人 NASA 太空发射系统 (SLS) 飞行器而设计。ISC 设计为可更换线路单元,其独特的模块化设计允许根据特定任务要求配置点火电路数量。ISC 还可用于各种航天器烟火驱动部署和分离应用。
Link-easy Aerospace 的 SBN 系列分离螺母是一种非常简单有效的压紧和释放机构,由镍钛诺形状记忆合金 (SMA) 丝驱动。分离螺母既具有高负载能力(1~20KN),又具有快速驱动时间(~50ms)。我们的分离螺母使用带有冗余 SMA 丝的分段螺母作为触发器。SMA 触发器可实现快速响应,并且释放冲击很小。设备中内置冗余开关,当分离螺母释放或装备时发出“开”或“关”信号,从而简化地面操作和飞行任务要求。分离螺母集成了旋转机构,使其能够在安装外壳内旋转高达 ± 2 °,从而保证较大的角度错位公差。分离螺母配备两个机械接口:标准顶部安装 (SBN-STD) 和底部安装 (SBN-BM)。
摘要 - 本文提出了一种新的机器人辅助双侧上肢训练策略,重点是用户上肢的双边协调。该策略是在双侧上肢康复装置(Bulred)上实施和评估的,该装置是由两个Maxon DC电动机促成的H机器人机制。控制系统由位置控制器,入学控制器和一种自适应算法组成,其中根据培训性能,通过会话修改了会话。此策略还与特定于主题的工作区集成在一起,以增强培训安全性。通过主动达到任务对五个受试者进行了实验。结果表明,提出的培训策略需要双侧上肢的显着协调,以完成任务完成,并且能够根据参与者的培训表现将控制参数调整到适当的难度水平。未来的工作将集中于对上肢障碍患者的临床评估。
130-400 吨的风冷 R 系列冷水机组采用“中间”压缩机。这些压缩机利用单一卸载方法(滑阀)从满载到压缩机的最小容量进行卸载。该滑阀位于阳转子和阴转子上方。随着 70、80、90、110 和 125 吨冷水机组加入我们的风冷产品线,我们还为 Helirotor 压缩机添加了新的设计概念,并将其称为“通用”压缩机。这种新设计的容量控制与大型压缩机的实现方式大致相同,通过调节由油压驱动的加载器、卸载器机构来实现。启动时使用简单活塞加载和卸载阶梯式卸载阀,使压缩机在卸载状态下启动,从而提高可靠性。随着负载的增加或减少,压缩机使用可变卸载阀来调节容量并紧密匹配所需的冷却负载。
Arrow Pneumatics 外部加热双塔再生干燥机结合了我们“RH”系列干燥剂干燥机的高可靠性,并增加了外部加热器,形成了“RE”系列干燥机。露点通常为 –40°F,可选低至 –100°F。吹扫空气约为额定流量的 7%,因此与无热再生干燥机相比,加热双塔再生干燥机的运行成本更低。“RE”系列中的吹扫空气由安装在外部安装外壳中的 100% 高效 incoloy 护套电加热器加热。恒温器控制加热器的温度,可延长使用寿命并节省能源。加热器和吹扫管道经过绝缘处理,以确保安全并进一步节省能源。Arrow “RE” 系列加热干燥机配有微处理器控制器,安装在 NEMA4 级外壳内。气动阀门使用寿命长,气流速度快。
多对象光谱(MOS)是宇宙起源(COR)计划的技术发展优先级。在基于地面的MOS应用(例如,机器人配置的纤维和打孔板)中流行的孔径控制方法是刚性的,对于太空飞行而言是不实用的。微糖阵列(MSA)技术解决了此问题。MSA充当适应性的缝隙面膜。可以对数组进行编程,以提供与天空中稀疏分布的源相对应的任何缝隙。也可以对其进行编程以在扩展源上提供形状的缝隙。这种NGMSA SAT的开发重点介绍了当前宇宙起源计划优先事项的技术进步以及IR/光学/UV(IROUV)战略任务,该战略使命是十分纪念日调查:2020年代(PDAA)的天文学和天文学发现途径和天文学发现的途径。该项目的主要目的是从技术准备水平(TRL)3至5中以较大的格式(736×384,282.6k总像素)提高静电致动MSA,以支持PDAA-RECECMONTED IROUV战略任务。
摘要 — 介绍了一种新型四轴飞行器的概念设计和飞行控制器。该设计能够在飞行过程中改变无人机的形状,以实现位置和姿态控制。我们考虑动态重心 ( CoG ),它会导致无人机的转动惯量 ( MoI ) 参数不断变化。这些动态结构参数在系统的稳定性和控制中起着至关重要的作用。四轴飞行器臂长是一个可变参数,它由基于姿态反馈的控制律驱动。MoI 参数是实时计算的,并纳入系统的运动方程中。无人机利用螺旋桨的角运动和可变的四轴飞行器臂长进行位置和导航控制。重心的运动空间是一个设计参数,它受执行器限制和系统稳定性要求的限制。提供了有关运动方程、飞行控制器设计和该系统可能应用的详细信息。此外,通过航路点导航任务和复杂轨迹跟踪的比较数值模拟对所提出的变形无人机系统进行了评估。
摘要 - 这项工作解决了完全致命的空中自动驱动器的交互控制问题。,我们使用几何一致的可变刚度阻抗控制解决问题,以使用能源罐的概念进行安全扳手调节,其中建模和控制均在汉密尔顿港框架中进行。我们利用了地面操纵器的文献中以前的众所周知的结果,并将其扩展为新颖和挑战的空中物理相互作用,重点是准静态应用。提出的控制方法的能量意识确保了空中机器人在自由交界和接触式SCENARIOS中的稳定性,以及与未知环境的接触式损失的情况下的一定程度。此外,通过利用键图,我们演示了如何以图形方式进行闭环的被动性。我们提出的方法的有效性通过多个实验显示。我们还提供了一些有关如何将提出的框架扩展到通用动态空中物理相互作用的见解。
测试框架 UTM 可以测试材料的拉伸或压缩性能。使用机电或液压测试框架施加负载。这些机器基于变速电动机、齿轮减速系统和一个或多个可上下移动横梁的螺钉。单柱测试仪通常用于需要较低力的应用,通常最高 1,500 lbF (6.7 kN)。这些测试仪适合台式安装,可用于实验室或生产环境。双柱测试仪可用于一些低力应用,但通常指定用于较高力应用。双柱测试框架可配置为台式或落地式安装。测试框架通常由一个或两个丝杠驱动,而重型机器则由液压驱动。可提供定制测试框架,其中可以增加柱高以允许测试大样品。通常集成了测量距离、限位返回或断裂停止的控制功能。
拓扑孤子目前正在研究其外来特性,尤其是在非线性物理,光学和物质科学方面。但是,随着时间的流逝,强大产生和稳定性有限的挑战阻碍了他们的实际用途。为了解决这个问题,开发了一种方法,以形成可聚合液晶膜片中孤子的结构化阵列。通过形成稳定的液晶网络的原位光聚合剂来保存它们的复杂分子结构。最令人兴奋的是,它们的属性已提高到包括响应功能。热驱动时,这些拓扑孤子介导了表面地形的重新配置。复杂形状的变化发生取决于导演的固有复杂空间分布,这甚至可能导致完全形状的反转和地形变化,高达最初厚度的40%。相反,形状的变化提供了有关初始导演pro文件的信息,该信息与数学模型一致。含孤子的聚合物涂层适用于多个域,范围从可调光学到触觉,从形状耦合的传感系统到温度耦合的热量管理。