真正的随机数发生器(TRNG)是许多应用程序的基本构建块,例如密码学,蒙特卡洛模拟,神经形态计算和概率计算。基于低屏障磁体(LBM)的垂直磁性隧道连接(PMTJ)是TRNG的天然来源,但它们倾向于遭受设备之间的变化,低速和温度敏感性的困扰。相反,用纳秒脉冲(表示为随机磁性的随机换能器(智能)设备)操作的中型驻磁铁(MBM)可能是此类应用的优越候选者。我们通过使用1-D Fokker – Planck方程来求解其脉冲持续时间(1 ps至1 ms)的基于MBM的PMTJ(E B〜20-40 K B t)的系统分析作为脉冲持续时间(1 ps至1 ms)的函数。我们研究了电压,温度和过程变化(MTJ尺寸和材料参数)对设备开关概率的影响。我们的发现表明,短期脉冲激活的智能设备(≲1ns)对工艺电压 - 温度(PVT)变化的敏感性要小得多,而消耗较低能量(〜fj)的智能设备比与较长脉冲一起使用的相同能量(〜fj)的敏感性要小得多。我们的结果显示了建立快速,节能和强大的TRNG硬件单元以解决优化问题的途径。
近几十年来,已经探索了折纸以帮助设计工程结构。这些结构涵盖了多个尺度,已被证明用于航空航天,超材料,生物医学,机器人和建筑应用等各个领域。从传统上讲,折纸或可部署的结构是由手,电动机或气动执行器驱动的,这可能会导致沉重或笨重的结构。另一方面,有效材料对外部刺激的响应重新构成,消除了对外部机械载荷和笨重的致动系统的需求。因此,近年来,与可部署结构合并的活性材料已经显示出对轻重,可编程折纸的远程致动的希望。在这篇评论中,有效材料,例如形状记忆聚合物(SMP)和合金(SMA),水凝胶,液晶弹性体(LCES),磁性软材料(MSMS)以及共价适应网络(CAN)聚合物,它们的驱动机制,以及它们如何用于现有的origanami和这些结构的使用方式,以及它们是可用的结构。此外,突出显示了构建活性折纸的最新制造方法。总结了折纸的现有结构建模策略,用于描述活跃材料的构造模型以及主动折纸研究的最大挑战和未来方向。
此外,拖车架还有一个第五轮,用于将拖车架连接并锁定在拖车的主销上。当半挂车由带有自己的第五轮的卡车拖拉机牵引时,通过将拖车架的轮眼连接到半挂车的枢轴,将拖车架拖在半挂车后面。e. 制动系统。半挂车的制动器由卡车拖拉机或牵引车提供的压缩空气启动和控制。两条管线(一条服务管线和一条应急管线(图 7))将压缩空气从拖拉机或牵引车送回位于后轴组件中的继动阀(图 6)。压缩空气储气罐连接到继动阀。如果制动管线意外断裂,则会从储气罐中释放 120 磅空气来启动制动器。在正常运行期间,服务管线会启动制动器。它将 120 磅的空气输送到继动阀。从这里,空气被传递到气室,气室将液压主缸中的液体推入制动缸以启动制动器。另一根空气软管连接到继动阀和液压主缸之间的空气管线上。它将压缩空气输送到台车以启动制动器。由于空气到达后制动器
由外部磁场造成的软机器因其与生物体和复杂环境相互作用的潜力而引起了显着关注。但是,它们的适应性和功能通常受到操作过程中刚性磁化的限制。在这项工作中,我们在操作过程中引入了动态可重编程的磁性软计算机,并通过各种磁场的协同作用在操作过程中进行原位重新确定的磁化功率。可振荡的谐振电路集成到机体中,从而通过不同频率的高频频率实现了对特定区域的可寻址和可感知的加热。机身由由低熔点合金和NDFEB微粒制成的微型头。加热时,合金液体会固定,允许在40吨脉冲编程场下旋转NDFEB微粒。冷却后,新的配置被锁定在适当的位置。此重编程过程对于单个或多台机器同样有效,从而实现了多种机器的多种模式变形和多个机器的合作。此外,通过结合可寻址的热致动,我们将示意多个机器人的原位组装。这项工作可能使具有增强功能的磁性软计算机可以实现。
摘要:提高功能复用程度,同时确保具有竞争力的成本下的操作可靠性和可制造性,是实现全面的样本到答案自动化的关键因素,例如,用于常见的、分散的“即时护理”或“即时使用”场景。本文展示了一种基于模型的“数字孪生”方法,该方法有效地支持了示例性离心气动 (CP) 可溶解膜 (DF) 虹吸阀的算法设计优化,以实现成熟的“盘上实验室” (LoaD) 系统的更大规模集成 (LSI)。显然,阀门及其上游实验室单元操作 (LUO) 的空间占用空间必须适合在测定方案中出现的给定径向位置,进入本地可访问的盘空间。同时,旋转驱动的 CP-DF 虹吸阀的保留率以及最具挑战性的带宽(与实验输入参数不可避免的公差有关)需要插入实际允许的频率包络的定义间隔内。为了实现特定的设计目标,定义了一组参数化指标,这些指标必须在其实际边界内满足,同时(在数值上)最小化频域中的带宽。虽然每个 LSI 场景都需要根据数字孪生单独解决,但提出了一套定性设计规则和指导性展示结构。
我们提出了一种规范的计算理论,说明神经回路如何在动态环境中支持视觉引导的目标导向动作。该模型建立在主动推理的基础上,通过动态最小化广义预测误差来推断感知和运动控制信号。后顶叶皮层 (PPC) 被认为可以保持对环境状态的不断更新的期望或信念,并通过灵活的意图操纵它们,参与动态生成目标导向动作。反过来,背侧视觉流 (DVS) 和本体感受通路实现了生成模型,将高级信念转化为感官级预测,以推断目标、姿势和运动命令。在目标到达任务中测试了一个包含视觉和本体感受传感器以及驱动上肢的概念验证代理。代理在各种条件下都表现正确,包括静态和动态目标、不同的感官反馈、感官精度、意图增益和运动策略;极限条件也是个性化的。因此,由动态和灵活意图驱动的主动推理可以支持不断变化的环境中的目标导向行为,而 PPC 则被认为是其核心意图机制的载体。更广泛地说,这项研究为端到端环境中的目标导向行为研究提供了规范基础,并进一步推进了主动生物系统的机制理论。
纤维的快照已被用作跨人类文化的数千年的一种交流和音乐形式。但是,尚未对这种快速运动的动力学进行系统分析。使用高速成像和力传感器,我们分析了纤维快照的动力学。我们的分析揭示了皮肤摩擦在介导SNAP动力学中的核心作用,通过充当控制所得高速度的闩锁。我们通过用不同的材料覆盖拇指和中纤维,以产生不同的摩擦系数和不同的可压缩性来评估这种摩擦闩锁的作用。在这样做时,我们揭示了纤维垫的可压缩摩擦闩锁可能在最佳调整的摩擦和压缩方案中运行。我们还开发了一种柔软的,可压缩的摩擦的闩锁介导的春季驱动(LAMSA)模型,以进一步阐明摩擦的关键作用及其与可压缩闩锁的相互作用。我们的数学模型表明,摩擦在纤维扣中起着双重作用,既有助于载荷,也可以在阻碍能量释放的同时进行储能。我们的工作揭示了如何将表面之间的摩擦作为可调的闩锁系统利用,并为许多机器人技术和超快速的能量释放结构的摩擦复杂性提供了设计见解。
摘要:高纵横比聚合物材料广泛应用于从服装等日常材料到工业和医疗领域的专用设备等各种应用领域。传统的制造方法,如挤压和模塑,在整合各种材料和实现复杂几何形状方面面临挑战。此外,这些方法在提供低成本和快速原型设计方面的能力有限,而这对于研发过程至关重要。在这项工作中,我们研究了使用市售的 3D 打印机来制造纤维预制件,然后将其热拉成纤维。通过优化 3D 打印参数,我们成功制造了直径小至 200 µm 且形状复杂、特征精确到几微米的纤维。我们通过从各种材料中制造纤维(例如具有不同刚度的纤维和具有磁性的纤维)证明了这种方法的多功能性,这有利于开发肌腱驱动和磁驱动的机器人纤维。此外,通过设计新颖的预制件几何形状,我们生产了锥形纤维和具有互锁机制的纤维,也适用于医疗可控导管应用。这些进步凸显了这种方法的可扩展性和多功能性,为生产用于各种应用的高精度聚合物纤维提供了一个强大的平台。关键词:增材制造;3D 打印;预制件制造;热拉伸;多材料纤维;功能纤维;纤维致动器
抽象的现代热泵在过去的50年中已经显着发展,以在广泛的条件下提供能量效率的冷却和加热。但是,改进的建筑法规和更高的能量效率标准的结果是,在某些情况和应用中,热泵可能难以在室内湿度保持舒适的水平,尤其是在潮湿的气候下。本文考虑了可以以多种模式运行的住宅热泵系统的建模和控制,包括常规的冷却模式和重新加热模式。在加热模式下,凝结(温暖)制冷剂通过室内热交换器重新加热条件空气。反馈的配置和作用降低了蒸发剂的温度,从而增加了水冷凝速率并降低了室内相对湿度水平。提出了一种对照算法,该算法可以协调可变速度压缩机,电子驱动的膨胀阀和可变速度风扇的作用,以实现室内空气温度调节和室内湿度调节。该算法包括在操作模式之间切换的混合逻辑。对多模式热泵的模拟耦合,并与位于潮湿气候区域中的典型住宅建筑的动态模型结合在一起,既显示温度和湿度调节。
摘要 轨道碎片由太空中废弃的人造物体组成,对关键的空间基础设施造成严重的运行风险。轨道碎片的存在会导致航天器运行成本增加,因为需要采取额外的努力,例如提高卫星轨道或增加屏蔽或其他方法,以保护重要的太空资产免受即将发生的碎片碰撞。其中一些碎片是由于宇航员在空间站进行维护操作时掉落工具而产生的。根据物体在掉落前所受的力/速度条件,它们可能会被转移到不同的轨道或进入地球大气层。这些物品的丢失可能会造成不利影响,因为它不仅会产生不必要的碎片,还会将关键的维护操作延迟到下一次补给任务的到来。本文旨在探索使用吞噬机制作为空间站机械臂末端执行器的可行性,以便在未来的空间站工作中回收此类丢失物品。重点介绍吞噬末端执行器机制的设计,使用 Bricard 机制作为基础单元。夹持器设计为使用单个旋转致动器来驱动,以完全吞噬碎片。本文还介绍了吞噬夹持器的实现方面,并将其用于地面碎片捕获实验/演示。
