颅骨插曲是重要的第一步。基于学习的细分模型(例如U-NET模型)在自动执行此细分任务时显示出令人鼓舞的结果。但是,当涉及到新生儿MRI数据时,在培训这些模型期间,没有任何可公开可用的大脑MRI数据集随着手动注释的segmentment口罩而被用作标签。大脑MR图像的手动分割是耗时,劳动力密集的,需要专业知识。此外,由于成人数据和新生儿数据之间的较大域移动,使用对成人脑MR图像进行训练的分割模型进行分割新生脑图像无效。因此,需要对新生儿大脑MRI的更有效,准确的颅骨剥离方法。在本文中,我们提出了一种无监督的方法,以适应经过成人MRI训练的U-NET颅骨剥离模型,以有效地在新生儿上工作。我们的资产证明了我们新颖的未加剧方法在提高分割准确性方面的有效性。我们提出的方法达到了总体骰子系数为0。916±0。032(平均值±STD),我们的消融研究巩固了我们提议的有效性。非常重要的是,我们的模型的性能与我们进行了综合的当前最新监督模型非常接近。所有代码均可在以下网址提供:https://github.com/abbasomidi77/daunet。这些发现表明,这种方法是一种有价值,更容易,更快的工具,用于支持医疗保健专业人员,以检查新生大脑的先生。
由于可能存在数据偏差和预测方差,图像去噪是一项具有挑战性的任务。现有方法通常计算成本高。在这项工作中,我们提出了一种无监督图像去噪器,称为自适应双自注意网络(IDEA-Net),以应对这些挑战。IDEA-Net 受益于生成学习的图像双自注意区域,其中强制执行去噪过程。此外,IDEA-Net 不仅对可能的数据偏差具有鲁棒性,而且还通过仅在单个噪声图像上应用具有泊松丢失操作的简化编码器-解码器来帮助减少预测方差。与其他基于单图像的学习和非学习图像去噪器相比,所提出的 IDEA-Net 在四个基准数据集上表现出色。 IDEA-Net 还展示了在低光和嘈杂场景中去除真实世界噪声的适当选择,这反过来有助于更准确地检测暗脸。源代码可在 https://github.com/zhemingzuo/IDEA-Net 获得。
●对工人合作社的熟悉和/或热情●在城市和区域规划方面的经验●具有地理信息系统(GIS)(GIS)和GIS软件(例如QGIS或ARCGIS)的经验●加拿大规划师研究所(CIP)或美国认证计划者研究所(CIP)(AICP)(AICP)名称(P. eng。) 指定●项目管理专业人员(PMP)指定●具有市政资产管理计划的经验●具有能源公用事业数据的经验●具有公司规模能源分析的经验●具有多样性,公平性和包容性倡议的经验,尤其是在小型组织中,尤其是在建立脱碳和运输技能方面的熟悉型熟悉的经验●良好的协商疗法●熟悉的经验●良好的交通事容●良好的稳定范围●良好的稳定范围|生活经验●其他语言的流利性或熟练程度,尤其是法语,西班牙语和土著语言eng。)指定●项目管理专业人员(PMP)指定●具有市政资产管理计划的经验●具有能源公用事业数据的经验●具有公司规模能源分析的经验●具有多样性,公平性和包容性倡议的经验,尤其是在小型组织中,尤其是在建立脱碳和运输技能方面的熟悉型熟悉的经验●良好的协商疗法●熟悉的经验●良好的交通事容●良好的稳定范围●良好的稳定范围|生活经验●其他语言的流利性或熟练程度,尤其是法语,西班牙语和土著语言
240 MHz 双核 Tensilica LX6 微控制器,具有 600 DMIPS 集成 520 KB SRAM 集成 802.11b/g/n HT40 Wi-Fi 收发器、基带、堆栈和 LWIP 集成双模蓝牙(经典和 BLE) 4 MByte 闪存 板载 PCB 天线 超低噪声模拟放大器 霍尔传感器 10x 电容式触摸接口 32 kHz 晶体振荡器 3 x UART(Feather Arduino IDE 支持中仅默认配置两个,一个 UART 用于引导加载/调试) 3 x SPI(Feather Arduino IDE 支持中仅默认配置一个) 2 x I2C(Feather Arduino IDE 支持中仅默认配置一个) 12 x ADC 输入通道 2 x I2S 音频 2 x DAC 每个 GPIO 引脚上可用的 PWM/定时器输入/输出 带有 32 kB TRAX 缓冲区的 OpenOCD 调试接口 SDIO主/辅 50 MHz SD 卡接口支持
USB -C端口 - 用于供电和编程板。您可以使用任何USB C电缆为其供电。插入USB时,它将为Lipoly电池充电。Lipoly Connector/Charger-您可以将任何250mAh或更大的3.7/4.2V Lipoly电池插入此JST 2 -PH端口,以供电羽毛并为电池充电。插入USB时,电池将从USB电源中充电。如果电池插入并插入了USB,则羽毛将自身从USB中供电,并且会为电池充电。CHG LED - 电池充电时,黄色CHG LED将被点亮。 充电后,LED会关闭。 如果没有电池插入电池,CHD LED可能会迅速闪烁 - 这是可以预期的!CHG LED - 电池充电时,黄色CHG LED将被点亮。充电后,LED会关闭。如果没有电池插入电池,CHD LED可能会迅速闪烁 - 这是可以预期的!
遗传性血管性水肿(HAE)是一种罕见的遗传疾病,会导致发作性皮肤和粘膜下肿胀,主要影响四肢,面部,胃肠道和上呼吸道(1)。HAE的最常见形式是由于血浆Kallikrein(PK)的主要抑制剂(PK)的主要抑制剂以及接触激活途径中血浆Kallikrein(PK)的主要抑制剂和激活的凝结因子XII所致。pk从高分子量激素(HMWK)中裂解血管活性肽的心动激肽,因此其阴性调节剂的丧失会导致头肌激素过度肿胀,后来受影响的患者肿胀(2)。长期预防(LTP)预防血管性水肿发作是当前HAE管理的基石。随着现代高效的LTP疗法的出现,治疗的目的已成为完全控制的疾病控制和患者生活的正常化(3)。 2019年国际/加拿大HAE指南建议将静脉或皮下等离子体衍生的C1抑制剂(PD-C1)或靶向PK的LANADelumab作为第一个LTP LTP代理(4)。 berotralstat是一种使用结构引导设计开发的合成小分子以抑制PK(5)。 这是一种口服的可生物利用药物,与PK丝氨酸蛋白酶结构域的活性位点结合,从而防止HMWK裂解。 在2021年,第3阶段的APEX-2研究表明,BerotralStat将血管性水肿发作的平均频率降低了44%,其中一半的患者接受了150 mg剂量的攻击频率降低了约70%(6)。 Berotralstat在2022年获得了加拿大监管批准。随着现代高效的LTP疗法的出现,治疗的目的已成为完全控制的疾病控制和患者生活的正常化(3)。2019年国际/加拿大HAE指南建议将静脉或皮下等离子体衍生的C1抑制剂(PD-C1)或靶向PK的LANADelumab作为第一个LTP LTP代理(4)。berotralstat是一种使用结构引导设计开发的合成小分子以抑制PK(5)。这是一种口服的可生物利用药物,与PK丝氨酸蛋白酶结构域的活性位点结合,从而防止HMWK裂解。在2021年,第3阶段的APEX-2研究表明,BerotralStat将血管性水肿发作的平均频率降低了44%,其中一半的患者接受了150 mg剂量的攻击频率降低了约70%(6)。Berotralstat在2022年获得了加拿大监管批准。最常见的治疗急性不良事件是胃肠道(GI)的副作用,例如腹痛,腹泻和腹泻。在此,我们描述了加拿大berotralstat使用的第一个现实研究。
I2C端口(SDA,SCL),硬件UART(RX,TX)和SPI(SCK,MOSI,MISO)的PIN号已更改。如果您的代码对这些引脚有过硬编码的使用,则您需要用新数字替换它们,或更改代码以使用SDA或SCK(例如SDA或SCK)的“漂亮”名称。在Espressif板支持包中选择新的Feather ESP32 V2板时,将替换正确的数字。请注意,名称位于同一位置,我们没有更改I2C/ UART/ SPI引脚位于板上的位置,正是它们在模块中连接的ESP32 PIN号。TX旁边的“角”引脚已从引脚21变为37。此引脚均未在任何羽毛上使用,因为它被认为是“额外的销钉”。它也从GPIO更改为仅输入,其余的编号引脚和A0-A5引脚没有更改PIN号码。
主动深度传感可实现强大的深度估计,但通常受感应范围的限制。天真地增加光学能力可以改善传感范围,但对许多应用(包括自主机器人和增强现实)的视力安全关注。在本文中,我们提出了一个自适应的主动深度传感器,该传感器可以共同介绍范围,功耗和眼部安全。主要观察结果是,我们不需要将光模式投影到整个场景,而只需要在关注的小区域中,在应用程序和被动立体声深度所需的深度失败的情况下。理论上将这种自适应感知方案与其他感应策略(例如全帧投影,线扫描和点扫描)进行了比较。我们表明,为了达到相同的最大感应距离,提出的方法在最短(最佳)眼部安全距离时会消耗最小的功率。我们用两个硬件原型实现了这种自适应感测方案,一个具有仅相位空间光调制器(SLM),另一个带有微电动机械(MEMS)镜像和衍射光学元素(DOE)。实验结果验证了我们方法的优势,并证明了其能力自适应地获得更高质量的几何形状。请参阅我们的项目网站以获取视频结果和代码:
摘要:本文提出了一种新型的监督学习方法——统计自适应傅里叶分解(SAFD)。SAFD 使用正交有理系统或 Takenaka-Malmquist(TM)系统为训练集建立学习模型,在此基础上可以对未知数据进行预测。该方法侧重于信号或时间序列的分类。AFD 是一种新开发的信号分析方法,它可以自适应地将不同的信号分解为不同的 TM 系统,引入了傅里叶类型但非线性和非负的时频表示。SAFD 将学习过程与 AFD 的适应性特征充分结合起来,其中少量的学习原子足以捕获信号的结构和特征以进行分类。SAFD 有三个优点。首先,在学习过程中会自动检测和提取特征。其次,所有参数都由算法自动选择。最后,将学习到的特征以数学形式表示出来,并可以根据感应瞬时频率进一步研究特征。通过心电图 (ECG) 信号分类验证了所提方法的有效性。实验表明,该方法比其他基于特征的学习方法效果更好。
可穿戴设备是一种快速增长的技术,对社会和经济的个人医疗保健产生了影响。由于传感器和分布式网络中传感器的广泛影响,功耗,处理速度和系统适应性对于将来的智能可穿戴设备至关重要。对如何在智能传感器中将计算到边缘的视觉和预测已经开始,并渴望提供自适应的极端边缘计算。在这里,我们提供了针对智能可穿戴设备的硬件和理论解决方案的整体视图,可以为这个普遍的计算时代提供指导。我们为在可穿戴传感器的神经形态计算技术中持续学习的生物合理模型提出了各种解决方案。为了设想这个概念,我们提供了一个系统的概述,其中预期在神经形态平台中可穿戴传感器的潜在低功率和低潜伏期情景。我们依次描述了利用互补金属氧化物半导体(CMOS)和新兴记忆技术(例如MEMRISTIVE设备)的神经形态处理器的重要潜在景观。此外,我们根据足迹,功耗,延迟和数据大小来评估可穿戴设备内边缘计算的要求。我们还研究了神经形态计算硬件,算法和设备以外的挑战,这些挑战可能阻碍智能可穿戴设备中自适应边缘计算的增强。